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1 Introduction

1.1 Background

A number of acoustic surveys of long-tailed bats (Chalinolobus tuberculatus) have been
carried out in the Hamilton City area from September 2011 to June 2017 including a
comprehensive city-wide survey carried out by Kessels Ecology from September 2011-
January 2012 which was the subject of an earlier Project Echo report (Le Roux & Le Roux,
2012). A list of data sources is provided in Appendix | (Table 2). These acoustic surveys have
resulted in the availability of presence and absence data, enabling modelling of long-tailed
bat distribution.

1.2 Aims
To develop a predictive model of habitats likely to host bats, based on acoustic survey
results and environmental variables that influence presence, resulting in:

e the identification of sites likely to host bats;

e amodel that can be extended to the Waikato region once acoustic surveys across a
range of environments representative of the region have been carried out.

2 Methods

2.1 The model

A species distribution model was created using MaxEnt software. MaxEnt is a statistical
learning method that combines species presence data with environmental variables to
predict species distribution based on the relationship between where the species occurs
and the environments in which it is found (Phillips, Anderson, & Schapire, 2006). It has been
used widely since becoming available in 2004 and is considered to have high predictive
ability (Elith et al., 2011).

The model calculates the probability distribution across a defined area using the input data
to both train and test the model across a number of iterations

(Yost, Petersen, Gregg, & Miller, 2008). The contribution of individual variables is measured
by jackknife tests which calculate the influence a variable has on the model when used in
isolation or when removed. Variables that decrease the predictive ability of the model can
be removed to improve the model’s performance (Yost et al., 2008). The primary output of
the model is a habitat suitability map estimating the probability of presence in each
individual cell or pixel on a scale of 0 - 1 (Barnhart & Gillam, 2014).

2.2 Boundary
Initially, the model was trialled using a boundary or “mask” based on a 10 km radius of

existing survey data. However, because the surrounding area did not represent the
environment typically surveyed, the model did not perform well. The mask was
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subsequently reduced to a 2.5 km buffer around the existing survey data. The mask was
then applied to all environmental variables to ensure that the model made its predictions
based only on the area of interest (Figure 1).

Matamats-Fiako Dis rict
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Waipa District
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Figure 1. Black line indicates the boundary of the mask created for use by the model based on a 2.5 km buffer
around the survey data (green dots = presence data; red dots = absence data). Grey area represents Hamilton
City. District boundary layer courtesy of Waikato Regional Council.

2.3 Scale

The cell size (spatial accuracy) selected for the model was 50 m?, a relatively fine-scale
resolution since the area being modelled is comparatively small.

2.4 \Variables

A number of potentially predictive environmental variables were trialled in the model
(Appendix I). The model takes each variable in turn and evaluates how useful it is on its own,
and in conjunction with other variables, in predicting bat presence by using some presence
data to train the model and some to test the model. The usefulness of individual variables is
then measured by jackknife tests which outline each variable’s contribution to training,
testing and the overall predictive ability (AUC value) of the model. To establish which
variables to use, different permutations of the available variables were trialled 38 times, and
the five variables selected were those that were most useful to the model, based on the
jackknife tests. The five variables are:

e distance to gullies
e distance to street lighting

e distance to residential areas
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e distance to vegetation
¢ land cover type.

It was decided not to use climatic variables in the model because of the small area being
studied. Once mapped in ArcGIS, it became clear that temperature and rainfall across the
area did not vary sufficiently to warrant inclusion. In general, climatic variables are only
useful if there are major shifts across the relevant area, such as may occur if the area being
modelled includes different biomes or major altitudinal changes.

2.5 Data

Survey data included 649 data points, of which 373 recorded bat presence and 276 failed to
detect bats. Thirty-five absence records were removed because no geographic coordinates
were provided. Two absence data points were removed because their geographic
coordinates were shown to be inaccurate when mapped in ArcGIS. Two duplicate presence
data points in Hommond Park were removed. In total, this left 610 survey points — 371
presence and 239 absence. However, because a number of presence records had identical
coordinates or were located in the same 50 m cell on the map, the model only used 160
presence data points.

Absence data points are not used by MaxEnt, but were mapped in ArcGIS since they can be
useful in monitoring any shifts in species distribution over time. Therefore, of the 649 data
points provided, it was only the 160 presence data points referred to above that were used
to predict bat habitat use within the area of the mask.

Following selection of the variables and input of the presence data, 20 multiple runs
(‘replicates’) of the model were carried out using randomly selected presence data points
for each run. Replicate runs of the same model potentially allow for it to be more robust as
the final model output represents the average findings across all replicates. This means it is
less likely to be skewed than if the model is run only once or twice.

The model must reach convergence to maximise its predictive ability and this is done
through a series of iterations which take place for every replicate run

(Young, Carter, & Evangelista, 2011). The default setting for the maximum number of
iterations was therefore changed from 500 to 5000 to allow for this although, in this case,
the model only needed to carry out 500-780 iterations over the 20 replicates to reach
convergence. Therefore, for each of the 20 replicate runs, the model also ran an average of
597 iterations. The model was run using cross-validation, which randomly splits presence
data into equal groups or “folds”. Each iteration of the model is produced leaving out one
fold at a time. The left-out fold is then used to evaluate the model. In this way, MaxEnt uses
all of the presence data available for validation (Phillips, 2005). Full details of the
parameters used to run the model can be found in Appendix .
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3 Results

Habitat suitability maps representing minimum, mean and maximum probability of bat
presence were produced based on the average result of the 20 replicate runs of the model.
The map representing maximum probability was selected to maximise opportunities for
further surveying (Figure 2).

Figure 2: MaxEnt model output based on maximum suitability for Chalinolobus tuberculatus. Colours represent
a range of pixel values assigned by the model to each 50 m’ grid cell, on a continuous scale from 0.00-1.00,
where 0.00 indicates presence of bats is highly unlikely and 1.00 indicates it is highly likely.
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Model output indicated 2.7% of habitat within the mask area as potentially suitable (i.e.
having a pixel value of 0.5 of higher) for long-tailed bats, while 97.3% was considered low
suitability (Figure 3).
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Figure 3. Habitat suitability for Chalinolobus tuberculatus in the mask area by percentage of coverage,
according to pixel value. Pixel values of 0.00-0.49 indicate low suitability while values of 0.50-1.00 indicate
medium-high suitability. The model deemed only 2.7% of the mask area as potentially suitable for long-tailed
bats, i.e. having a value of 0.50 and higher.

When the pixel values representing probability of presence are compared to actual survey
data locations, it can be seen that the model correctly predicts 60% of absences in the low
suitability pixel range (0.00-0.49) and 77% of presences in the medium-high suitability range
(0.50-0.99) (Table 1).

Table 1. Percentage of detections based on pixel value allocated by model to habitat suitability map (0 = least
suitable habitat; 1 = most suitable habitat)

Pixel value  Presence = Absence  Total % Presences % Absences \
0.00-0.49 108 162 270 40% 60%
0.50-0.99 263 77 340 77% 23%

Page | 5




Predictive ability increases at the extreme suitability values, with the model correctly
predicting presence in 91% of cells with a suitability value of 0.80-0.89, and correctly
predicting absence in 82% of cells with a suitability value of 0.00-0.09 (Figure 4).
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Figure 4. Pixel values allocated by the model compared against cells containing presence and absence data
recorded from surveys (<0.49 = low habitat suitability; >0.50 = medium to high habitat suitability).
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The model’s predictions included only three pixels within the 0.90-1.00 range and these
were in close proximity to presence data points (Figure 5).
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Figure 5. Location of cells with pixel value of 0.90-1.00 near Vintners Lane, Tamahere shown against (a)
imagery basemap and (b) street name basemap. Inset shows cells in relation to mask boundary (black line) and
Hamilton City boundaries (dark grey area).
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Jackknife tests of variable importance were produced based on the variables’ contributions
to training, testing and predictive ability of the model (Figure 6). A probability distribution is
generated by the model across all cells or pixels in the area being modelled, starting with a
uniform distribution (represented by zero). A number of iterations are carried out using the
data provided which increase the probability or gain of sample locations. The resulting
figure or “regularised training gain” arrived at by the model is a measure of how well the
distribution model fits the data compared to uniform distribution. The exponential of the
regularised training gain indicates how many times higher the average sample likelihood is
compared to a random pixel (Yost et al., 2008). A good predictive model should perform
better than random and, in this case, the regularised training gain was 2.0256 (e29%°6=7 58),
indicating that the likelihood of the model distribution was 7.58 times higher than random
uniform distribution (Figure 6a). The model also evaluates itself by comparing its probability
distribution against random distribution using an AUC value, where a value of less than 0.50
indicates that the predictive power is worse than random, 0.50 equals random and a value
of greater than 0.50 indicates higher predictive power (Phillips et al., 2006). Therefore, the
higher the AUC value, the higher its predictive power is considered to be. In this case, the
AUC value was very high at 0.95 (Figure 6c).
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Figure 6. Results of jackknife tests in MaxEnt model identifying the contribution of each variable to (a) training,
(b) testing, and (c) AUC value of the model. Values represent the average over twenty replicate runs. Black
bars indicate the gain when the variable is used on its own and grey bars indicate the drop in gain when it is
removed. Distance to vegetation contributed the most to the training, testing and predictive ability (AUC
value) of the model and also resulted in the biggest drop in gain when removed.
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The most important variable was distance to vegetation. Jackknife tests show that distance
to vegetation resulted in the highest training gain (1.53) and the biggest drop when
removed (gain reduced from 2.02 to 1.53) (Figure 6a). The overall test gain was 2.15 with
distance to vegetation once again resulting in the highest test gain (1.51), and the largest
drop when removed (2.15 down to 1.62) (Figure 6b). The jackknife test on the AUC using
test data found that distance to vegetation also contributed the most (0.90) to the
predictive ability of the model as measured by the AUC value of 0.95 (Figure 6¢). The
response curve for distance to vegetation found that probability of bat presence was
highest (0.70) with zero distance to vegetation and fell sharply to less than 0.1 at a distance
of approximately 125 m (Figure 7).
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Figure 7. MaxEnt response curve for the distance to vegetation layer. The red line indicates the mean response
of the 20 replicate runs carried out by the model while the blue area represents +/- one standard deviation.
The Euclidean (straight line) distance shows that the probability of bat presence is highest (0.70) with zero
distance to vegetation and drops sharply to less than 0.1 at a distance of approximately 125 m.

Distance to gullies was the second most important variable in terms of its contribution to
the AUC value. The gullies layer, which was supplied by Hamilton City Council, only extended
to the boundaries of the Hamilton City area and not to the southern boundary of the buffer.
Therefore, the effects of gullies in relation to the most southerly presence data points have
not been recognised by the model. However, it was considered worthwhile to retain
distance to gullies as its contribution to the AUC value, or predictive ability, of the model
was second only to the contribution made by distance to vegetation. Although both
variables are correlated (vegetation lines the gullies), removing gullies slightly lowered the
predictive ability of the model. The response curve for distance to gullies found that
probability of bat presence was highest (0.80) with zero distance to gullies and fell sharply
to less than 0.5 at a distance of approximately 100 m (Figure 8).

Page | 10




5 o o © ©o o o
S w - (4] [=2] ~ (o)
1 1 1 L 1 1 1

Logistic output (probability of presence)

o
-
L

0.0 . 1

-1000 0 1000 2000 3000 4000 5000 6000 7000 8000
Euclidean (straight line) distance (m)

Figure 8. Response curve for the distance to gullies layer. The red line indicates the mean response of the 20
replicate runs carried out by the model while the blue area represents +/- one standard deviation. The
Euclidean (straight line) distance shows that the probability of bat presence is highest with zero distance to
gullies.

Land cover type was the third most important variable in terms of the AUC value, but the
second most important in terms of training and testing the model. The response curve
generated for land cover showed that when this variable was used in isolation, four types
predicted greater probability of presence. These were indigenous forest (0.88), broadleaved
indigenous hardwoods (0.83), gorse/broom (0.71) and manuka/kanuka (0.62). Other land
cover types contributed 0.15-0.53 (Figure 9).
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Figure 9. The effect of different land cover categories on a MaxEnt species distribution model’s logistic

prediction of long-tailed bats (Chalinolobus tuberculatus) in the mask area when the land cover variable is the

only variable used. Probability of presence is estimated over a scale of 0.00-1.00 with higher numbers

indicating higher likelihood of presence and is the mean response over 20 replicate runs +/- one standard
deviation. Red line indicates the threshold at which bat presence becomes more likely (0.50+). The model
found indigenous forest to be the greatest predictor of bat presence when land cover was considered on its
own (i.e. when other variables were excluded).

Distance to residential areas was the fourth most important variable to the model, although

its removal resulted in losses to training and testing that were similar to those when
distance to gullies was removed. The response curve for distance to residential areas
indicated that the probability of bat presence was highest (0.64) at close to zero distance
from residential areas, with probability of presence decreasing as distance to residential
areas increased (Figure 10).
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Figure 10. Response curve for the distance to residential areas layer. The red line indicates the mean response
of the 20 replicate runs carried out by the model while the blue area represents +/- one standard deviation.
The Euclidean (straight line) distance shows that the probability of bat presence is highest close to residential
areas and decreases as distance to residential areas increases.

Distance to street lighting was the least important variable, however its removal resulted in

some loss to the training and testing of the model. The response curve for distance to street
lighting showed the probability of bat presence increasing with a distance of approximately

100 m from street lights to a maximum of 0.57 and then decreasing as distance from street

lighting increased (Figure 11).
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Figure 11. Response curve for the distance to street lighting layer. The red line indicates the mean response of
the 20 replicate runs carried out by the model while the blue area represents +/- one standard deviation. The
Euclidean (straight line) distance shows that the probability of bat presence is highest approximately 100 m
away from street lighting.
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4 Discussion

A model’s predictive ability may in part be measured by comparing how well the heat map
output fits with the data available (Yost et al., 2008). Although this model was better at
predicting presence and absence at more extreme values, it nevertheless incorrectly
predicted presence for 18% of all cells surveyed in the 0.00-0.09 range and incorrectly
predicted absence for 9% of all cells surveyed in the 0.80-0.89 range. However, some of the
presence data points were in areas not necessarily considered suitable for bats, such as
open pasture. When viewed in ArcGIS using an imagery basemap, it can be seen that,
although the area was correctly categorised as high-producing exotic grassland by the land
cover variable used in the model, the presence of linear features such as hedges and trees is
allowing bats to utilise the area. Since land cover variables rarely include this degree of
detail, it is not possible for the model to recognise that these linear features are increasing
the possibility of bat presence. Instead, the model has assigned probability of presence
values ranging from 0.02-0.19 for the six presence data points shown (Figure 12).

Figure 12. Presence data points (green) of Chalinolobus tuberculatus in the mask area show that bats are
utilising linear features in open pasture. Inset shows the location of the presence data points (circled in yellow)
on the heat map produced by the MaxEnt model where blue indicates that the presence of bats is highly
unlikely.

This is one of the limitations of the model; its predictive ability is limited by the extent and
accuracy of the detail provided in the variables.
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It is less surprising that the model is predicting bat presence in areas where surveys have
taken place, and bats have not been detected (Figure 13).

Figure 13. Absence data points (red) mapped against the MaxEnt model output where blue indicates that the
presence of bats is highly unlikely and red indicates that it is highly likely.

Although a presence data model should represent the realised niche, since it is informed by
where the species is actually found in combination with other variables, in practice it is
more likely to represent its potential or fundamental niche. This is due to difficulties
incorporating biotic interactions and disturbances into the model, which may have
influenced species presence or absence (Guisan & Thuiller, 2005). For bats, disturbance may
include light or noise pollution, while biotic interactions may include competition for roost
sites and food, or predation. In addition, the surveys themselves may be inaccurate as
absence of evidence does not equate to evidence of absence, particularly since bats are
nocturnal, cryptic and highly mobile species. Additionally, because the model evaluates each
50 m? cell individually, it does not fully reflect the mobility of bats, i.e. the fact that
probability of presence is likely to diminish along a gradient away from high probability
sites. This can be accounted for in part by the use of “distance to” variables which take
proximity to key variables into consideration. However, despite this, the model has assigned
low values to some cells which are in close proximity to cells with high probability of
presence (Figure 14).
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Figure 14. Presence data points (green) shown (a) against the model output where blue indicates that the
presence of bats is highly unlikely and red indicates that it is highly likely, and (b) shown against an imagery
basemap. The distance between the presence data points deemed high and low probability is 553 m at its
shortest point. As can be seen, the model does not fully reflect the mobility of bats, i.e. the fact that
probability of presence is likely to diminish along a gradient away from high probability sites. Instead, it
evaluates each 50 m” cell individually, leading to some cells being deemed low suitability even though they are
in close proximity to high suitability cells.
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Despite these limitations, the model is recognising the importance of the gully systems and
vegetation in the south of the city and the potential of the gully systems in the north of
Hamilton. The clearest outcome was in relation to distance to vegetation which consistently
contributed highly to the training, testing and predictive ability of the model (Figure 6), and
the response curve which showed that probability of presence was highest at zero distance
to vegetation (Figure 7). This is unsurprising given the importance of vegetation to bats for
navigating, roosting, shelter from predators and edge habitat for foraging. The vegetation to
the south of Hamilton covers a larger area and is less fragmented than that further north
which could be assisting bats by providing connectivity over a greater area for foraging
(Figure 15).

Figure 15. Waikato Regional Council’s vegetation layer used as the basis of the distance to vegetation variable.
Black line indicates the boundary of the model. Presence data (green dots) are clustered around the larger
areas of vegetation while absence data (red dots) are associated with the smaller, more fragmented
vegetation further north.

Distance to gullies was the second highest contributor to the AUC value (Figure 6¢) with the
response curve indicating that the probability of bat presence was highest with zero
distance to gullies, falling to less than 0.5 at a distance of approximately 100 m (Figure 8).
The importance of the gulley system around Hamilton to long-tailed bats has been noted in
other studies. Dekrout et al found bat activity to be correlated to the presence of gullies and
noted that gullies were likely to provide connectivity between rivers and forest fragments
and also habitat in which to roost and forage (Dekrout, Clarkson, & Parsons, 2014).

When mapped, the influence of both vegetation and gullies on the model’s predictions can
be seen clearly in the heat map produced (Figure 16).
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Figure 16. Maps produced in ArcMap 10.3 showing (a) vegetation, (b) gullies and (c) the model output or heat
map. The area representing higher probability of presence (warmer colours) in the heat map corresponds
closely to the area covered by vegetation and gullies, demonstrating the strong influence of both variables on
the model.

The distance to rivers layer was not included in the model since its removal did not result in
any prediction loss when it was trialled. This was unexpected since other studies have found
it to be important, e.g. Bellamy, Scott, & Altringham, 2013; Herkt, Barnikel, Skidmore, &
Fahr, 2016; Wordley, Sankaran, Mudappa, & Altringham, 2015. However, the location of
rivers was generally correlated with the location of gullies and vegetation and, because of
this, did not assist in the model’s predictive ability.

The response curve for land cover type indicated that the presence of indigenous forest,
broadleaved indigenous hardwoods, gorse/broom (Ulex europaeus/Cytisus scoparius),
manuka/kanuka (Leptospermum scoparium/Kunzea ericoides), rivers and deciduous
hardwoods were associated with a medium to high probability of bat presence (Figure 9).
This use by long-tailed bats of a variety of habitats has been seen throughout the country
with studies finding bats using not only trees such as beech (Nothofagus; Greaves, Mathieu,
& Seddon, 2006; Sedgeley & O'Donnell, 1999), kauri (Agathis australia; Alexander, 2001),
willow (Salix fragilis; Sedgeley & O'Donnell, 2004) and pine (Pinus radiata; Borkin & Parsons,
2010), but also caves (Guilbert, Walker, Greif, & Parsons, 2007) and limestone outcrops
(Griffiths, 2007).

The land cover types with very low probability of bat presence were high-producing exotic
grassland and short-rotation cropland, while built-up areas were associated with the lowest
probability of presence. Improved pasture was found to indicate low probability of bat
presence in the Auckland region also (Crewther, 2016), but surveys in the Hamilton area
have detected bats in area classified as pasture due to the presence of linear features such
as hedges and trees (Figure 12). In Hamilton, Claudeland’s Bush - a kahikatea (Dacrycarpus
dacrydioides) dominated remnant forest generally considered suitable habitat for bats, no
bats have been detected despite being found consistently in Hammond Bush, an urban
forest reserve (Dekrout et al., 2014). Dekrout et al noted that Claudeland’s Bush was
surrounded by a major road network and lacked connectivity with other habitats, while
Hammond’s Bush was connected both to the Waikato River and a major gulley system. Land
cover type on its own, therefore, may not be the best predictor of bat presence since its
suitability may be influenced by other factors.
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The effect of residential areas was not clear from the model output which suggested that
the probability of bat presence peaked at zero distance and then decreased with increasing
distance from residential areas (Figure 10). Similarly, the response curve for distance to
street lighting suggested that probability of bat presence peaked at a distance of around
100 m, but then decreased with increasing distance from street lighting (Figure 11). It is
highly unlikely that bat presence would decrease further away from residential areas and
street lighting, especially given that bat presence has been found to be negatively correlated
to housing and streetlight density (Dekrout, 2009). The model output is likely to be
reflecting survey bias since most surveys were carried out in close proximity to residential
areas and street lighting, i.e. the model is seeing the presence of residential areas and street
lighting as an indicator of bat presence rather than incidental to it. Certainly, the mapping of
presence data points indicates that most are peripheral to areas where housing, street
lighting and road density are highest (Figure 17).

(a) (b)

Figure 17. Presence data (green dots) and absence data (red dots) mapped in ArcMap 10.3 against (a)
residential areas; (b) street lighting; and (c) roads in the mask area. Most presence data points are peripheral
to areas where housing, road and street light density are highest.

It is evident that many of the areas classified as medium to high probability of bat presence
by the model have already been recognised as suitable habitat, as they have been surveyed
from 2011-2017, with monitoring lasting for 5-23 nights. These areas were also surveyed
four times between October 2005 and March 2007 as part of a comprehensive city-wide
series of surveys in which the area was divided into 90 x 1 km? quadrats, which were
systematically surveyed by boat and on foot (Dekrout, 2009). The fact that bats have not
been detected in the more northerly areas suggests that there may be behavioural
constraints preventing bats from moving up the Waikato River. Dekrout’s findings were
similar to those of surveys used to inform this model, in that presence data was focused
around the Hammond’s Bush area to the south of Hamilton. She concluded that bat
presence was positively correlated with the topographical complexity associated with gullies
and negatively correlated with housing and street light density (Dekrout, 2009). It appears,
therefore, that the rivers and gullies which run through the more densely populated parts of
Hamilton are not being used by bats and that the majority of activity continues to be
confined to the south/southeast region on the edge of Hamilton City (Figure 1).
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5 Summary and recommendations

Whilst gullies and vegetation have been shown to be the key predictors of bat presence, the
likelihood of presence is also influenced (positively and negatively) by nearby land cover
types and reduced in areas where housing and street lighting are most dense. Recorded
presence data shows most detections occurring in clusters on the periphery of urban
Hamilton, predominantly in the south and southeast, and only extending north to the east
of the city in areas of pasture containing linear features such as hedges, and where housing
and street lighting density is very low.

Although it appears that the northern gully systems are not being used by bats, it would be
worthwhile to survey them from time to time for any change. Certainly, it would be worth
surveying areas in the higher suitability range (i.e. 0.70 and over per the maps provided in
Appendix Il) given that the model’s predictive ability generally increased at either extreme,
especially in those areas which have not already been surveyed. It would also be worthwhile
surveying more of the pastoral areas in the north where there are linear features, as bats
may be choosing to forage in these quieter areas on the outskirts rather than use the
Waikato River as it enters more populous, noisy and well-lit parts of the city.

It would be useful to maintain a central database of survey results for the Waikato Region to
ensure that any changes to bat distribution can be monitored. Although absence data points
were not used in the model, a record of these is still important. It is essential that
geographic coordinates and monitoring dates are recorded accurately for every ABM placed
so that data can be mapped and monitored over time.

Several areas have been identified as suitable for bats, but where bats have not been
detected. This may be due to fragmentation of natural areas leading to their isolation.
Increasing connectivity of these areas (e.g. Claudeland’s Bush) may open them up for use by
bats.
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Appendix I: Model inputs/output

Data

Presence and absence data were provided by Kessels Ecology and included findings from 14
surveys carried out from 2011-2017 (Table 2).

Table 2. Surveys carried out in the mask area used to inform the model

Data sources ‘ Dates monitored ‘
2011/2012 City-wide Bat Survey Sept 2011-Jan 2012
2012 Hammond Park Gum Tree Removal - Bat Survey 14-17 Dec 2012

2013 Rugby Park - Bat Survey May 2013

2014 Cobham Drive - Hamilton Gardens - Gully Assessment Apr 2014

2014 Sanford Park Tree Removal - Bat Survey 1-50ct 2014

2015 NZTA Survey_2 31 March-31 May 2015
2015 Memorial Drive Tree Removal - Bat Survey June 2015

2015 Sanford Park - Bat Survey Dec 2015

2016 NZTA Survey_3 26 Jan-4 Apr 2016
2016 Hamilton Gardens Cemetery Tree Removal — Bat Survey 9-12 Feb 2016

2016 NZTA Survey_4 29 March-3 May 2016
2016 Hamilton Gardens Tree Removal — Bat Survey May-Nov 2016

2016 Wellington Street Tree Removal - Bat Survey Nov 2016

2017 Community City Survey Feb-June 2017
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Mask

Both presence and absence data were mapped and a minimum convex polygon drawn
around the survey points. A 2,500 metre buffer to the minimum convex polygon was then
added to create the mask or boundary for the model (Figure 18).

Figure 18. Buffer or mask used for model. Green dots represent presence data, red dots represent absence
data, the purple area represents the 100% minimum convex polygon created and the black line represents the
2500 m buffer or mask on which the model is based.
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Variables

Variables selected and trialled for use in the model included:

VELEL (S
Land cover

Name of file

LCDB v4.1 - Land Cover
Database version 4.1,
Mainland New Zealand

Source
Landcare Research NZ
LTD

Source
https://Iris.scinfo.org.nz/

Vegetation (1)

Biodiversity vegetation
2012

Waikato Regional
Council

Requested through personal
communication

Gullies

GeotechHazard

Hamilton City Council

Requested through personal
communication

Residential areas

NZ Residential Areas

Land Information NZ

https://koordinates.com/

Street lighting
(merged files)

Hamilton City
Waikato District
Waipa District

NZTA with the
permission of Hamilton
City, Waikato and
Waipa Districts

Requested through personal
communication

Significant natural
areas

Significant Natural Areas

Hamilton City Council

Requested through personal
communication

Reserves

Reserves Update 2015

Hamilton City Council

Requested through personal
communication

Significant trees

SignifTreesOverlayPt
2012

Hamilton City Council

Requested through personal
communication

Vegetation (2)

Vegetative cover map of
NZ

Landcare Research NZ
LTD

https://Iris.scinfo.org.nz/

(Topo 1:50k)

Elevation Land Environments New | MfE https://data.mfe.govt.nz/layer/2358-
Zealand (LENZ) — Level 4 land-environments-new-zealand-
Polygons (2009) lenz-level-4-polygons-2009/

Roads NZ Road Centrelines Land Information NZ https://koordinates.com/

Rivers (merged files)

NZ River Polygons (Topo
1:50k)

NZ River Centrelines
(Topographical 1:50k)

Land Information NZ

https://koordinates.com/

Lakes

NZ Lake Polygons (Topo
1:50k)

Land Information NZ

https://koordinates.com/

quarter

Annual mean BIO;
temperature

Mean temperature BIO4o
warmest quarter

Mean temperature BIOq;
coldest quarter

Annual precipitation BIO4,
Precipitation of BlO46
wettest quarter

Precipitation of driest | BIOy;

BIOCLIM

Data for current
conditions ~1950-2000
30 arc-seconds ESRI
grids

http://www.worldclim.org/current
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The first five variables listed are those which were selected for the final model. The others
were removed as they did not contribute greatly to improving the model’s predictive power
and, in some cases, were highly correlated to other variables.

All the files used, with the exception of the land cover layer, were converted in ArcGIS to
“distance to” files based on Euclidean (straight line) distance from presence data points.

Model parameters

e Replicated run type: Crossvalidate

e Random seed selected (so the model didn’t select the same data points for every run)
e Regularization multiplier set to 2 to avoid overfitting of the model

e Replicates: 20

e Maximum iterations changed to 5000

e Other settings kept on the MaxEnt defaults
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Appendix Il: Proposed areas for surveying

The following maps provide the locations of cells which the model deemed to have a
probability of bat presence of 0.70 and higher.
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Figure 19. Mask area showing the broad location of cells deemed by the model to have a higher probability of
bat presence (0.70+).
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area (circled in blue) in relation to overall mask area. Areas already surveyed are represented by green dots for presence data points and red dots for absence data points.
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cells which the model deemed to be of higher suitability for long-tailed bats (0.70+). Inset shows approximate location of mapped

area (circled in blue) in relation to overall mask area. Areas already surveyed are represented by green dots for presence data points and red dots for absence data points.
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Figure 27. Numbers in pink indicate 50 m? cells which the model deemed to be of higher suitability for long-tailed bats (0.70+). Inset shows approximate location of mapped
area (circled in blue) in relation to overall mask area. Areas already surveyed are represented by green dots for presence data points and red dots for absence data points.
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Figure 28. Numbers in pink indicate 50 m” cells which the model deemed to be of higher suitability for long-tailed bats (0.70+). Inset shows approximate location of mapped
area (circled in blue) in relation to overall mask area. Areas already surveyed are represented by green dots for presence data points and red dots for absence data points.
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Figure 29. Numbers in pink indicate 50 m” cells which the model deemed to be of higher suitability for long-tailed bats (0.70+). Inset shows approximate location of mapped
area (circled in blue) in relation to overall mask area. Areas already surveyed are represented by green dots for presence data points and red dots for absence data points.
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Figure 30. Numbers in pink indicate 50 m? cells which the model deemed to be of higher suitability for long-tailed bats (0.70+). Inset shows approximate location of mapped
area (circled in blue) in relation to overall mask area. Areas already surveyed are represented by green dots for presence data points and red dots for absence data points.
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Figure 31. Numbers in pink indicate 50 m” cells which the model deemed to be of higher suitability for long-tailed bats (0.70+). Inset shows approximate location of mapped
area (circled in blue) in relation to overall mask area. Areas already surveyed are represented by green dots for presence data points and red dots for absence data points.
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Figure 32. Numbers in pink indicate 50 m” cells which the model deemed to be of higher suitability for long-tailed bats (0.70+). Inset shows approximate location of mapped

area (circled in blue) in relation to overall mask area. Areas already surveyed are represented by green dots for presence data points and red dots for absence data points.
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Figure 33. Numbers in pink indicate 50 m? cells which the model deemed to be of higher suitability for long-tailed bats (0.70+). Inset shows approximate location of mapped
area (circled in blue) in relation to overall mask area. Areas already surveyed are represented by green dots for presence data points and red dots for absence data points.
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