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Abstract 

This study investigated state and trends in river water quality measures that indicate human 

health risk and sediment contamination in rivers of the Manawatū-Whanganui region. The 

water quality measures included one indicator of human health risk; the concentration of 

Escherichia coli (E. coli), and three measures of sediment contamination; visual clarity 

suspended solids concentration (SSC) and turbidity. The water quality data was derived from 

monitoring carried out over the past decade by Horizons Regional Council (HRC) at river sites 

distributed throughout the region.  

The study investigated the following key areas: 

1. Comparison of the national swimming map, which was derived from a large national 

dataset of water quality monitoring sites, with a regional swimming map derived from a 

smaller number of regional state of environment (SoE) sites. 

2. Assessment of trends in three E. coli statistics (median and the proportion of samples 

exceeding 260 and 540 E. coli 100mL-1; referred to as the G260 and G540), and the 

three sediment related water quality variables at SoE sites over the 10 and seven-year 

time-periods ending in 2016. 

3. The associations between the water quality trends and several interventions that HRC 

have initiated aimed at improving water quality including upgrading point source 

discharges and land management initiatives.  

The spatial patterns in swimming grades defined by the national and regional swimming maps 

were reasonably consistent. The national map indicated that 45% of the region’s large rivers 

(i.e., river segments or order 4 and greater) are swimmable (grade ‘fair’ or better). The regional 

swimming map indicated that 38% of large rivers are swimmable. When all rivers (small and 

large) were considered, the national and regional swimming maps indicated 36% and 37% of 

rivers are swimmable respectively. The study showed that the models that underlie the 

swimming maps are sensitive to the input data and that the swimming grades at individual sites 

are sensitive to the time-period of analysis. Therefore, swimming maps and the estimated 

quantity of swimmable rivers should be regarded as indicative. 

The proportion of 10-year trends at SoE sites that were at least as likely as not to be improving 

were 65%, 81% and 80% for median E. coli, G260 and G540 respectively. For the seven-year 

time-period, the proportion of trends at SoE sites that were at least as likely as not to be 

improving were 72%, 91%, 81%, 78%, 99% and 95% for median E. coli, G260, G540, clarity, 

SSC and turbidity respectively. Thus, the trend analyses provide strong statistical evidence of 

regional improvement in the water quality measures over the past decade. 

Several independent analyses undertaken by the study found weak but statistically significant 

positive associations between improving trends for all water quality variables and the 

proportion of catchment area involved in sustainable land use initiative (SLUI) farm plans. The 

associations between trends and HRC riparian planting and new fencing initiatives were less 

clear with some analyses indicating the initiatives were associated with degradation and others 

with improvement. These results cannot prove that the interventions caused the water quality 

changes and may be confounded by other factors such as changes in land use intensity and 

climate. Overall, the results provide weak evidence that a package of mitigation measures 

implemented at many locations across a region can produce regional scale water quality 

improvements. By contrast, the analysis provided strong statistical evidence of water quality 

improvements associated with upgrading point source discharges throughout the region. 
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Executive Summary 

This study investigated changes in river water quality measures that indicate human health 

risk and sediment contamination in rivers of the Manawatū-Whanganui region. The water 

quality measures included one indicator of human health risk; the concentration of Escherichia 

coli (E. coli), and three measures of sediment contamination; visual clarity as measured by 

black disc (clarity) suspended solids concentration (SSC) and turbidity. The water quality data 

was derived from river water quality monitoring carried out over the past decade by Horizons 

Regional Council (HRC) at sites distributed throughout the region.  

Over the past 10 years HRC have initiated a range of interventions aimed at improving water 

quality in the region including upgrading discharges and land management initiatives. A 

geographic database describing the location of these interventions had been maintained by 

HRC and this data was also used in this study.  

The contamination of freshwater with pathogens and sediment is a national water quality issue 

due to the impacts on human use and ecological values. The National Objectives Framework 

(NOF) of the National Policy Statement – Freshwater Management (NPS-FM) defines 

‘swimming grades’ from excellent (A) to poor (E). In addition, ‘national swimming maps’, 

showing estimated swimming grades for all large rivers in New Zealand, were used to set 

targets for improving the total length of ‘swimmable’ freshwaters nationally. The NOF does not 

currently define objectives related to sediment contamination. However, sediment attributes 

are under development. In addition, management of sediment contamination of freshwaters is 

a requirement of the NPS-FM irrespective of the existence of specific sediment-related NOF 

attributes due to sediment’s impacts on compulsory values. Assessment of the state of 

freshwaters with respect to human health risk and sediment impacts and evaluation of 

interventions aimed at improving water quality are therefore of interest both nationally and 

regionally.  

This regional case study investigated the following areas: 

1. Comparison of the national swimming map, which was derived from a large national 

dataset of water quality monitoring sites, with a regional swimming map derived from a 

smaller number of regional state of environment (SoE) sites. The comparison included 

differences between the swimming maps that include only large rivers (order 4 and 

greater) and including smaller rivers and streams (order 1, 2 and 3). 

2. Comparison of regional swimming maps derived using year-round data compared to 

maps derived using data pertaining to the ‘bathing season’ (November to March). 

3. Trends in E. coli and three sediment related water quality variables (visual clarity, 

suspended sediment concentration and turbidity) over the 10 and seven-year time-

periods ending in 2016. 

4. The associations between water quality interventions and water quality trends.  

The majority of these investigations were conducted for a subset of the monitoring sites that 

can be regarded as state of environment (SoE) sites. Water quality measured at SoE sites is 

broadly representative of conditions in the region and have been regularly measured for a 

number of water quality variables. For the 10-year time-period, 69 sites had adequate data 

and were included in the analysis and for the 7-year time period up to 86 sites were included. 

The main outcomes of these investigations are summarised below. 

1. National versus regional swimming maps 
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The national swimming map indicated that 45% of the region’s large rivers (i.e., river segments 

or order 4 and greater) are swimmable (grade ‘fair’ or better). The regional swimming maps 

indicated that 38% of large rivers are swimmable. When all rivers (small and large) were 

considered, the national swimming maps indicated 36% of rivers are swimmable and the 

regional maps indicated 37% are swimmable. 

The spatial patterns in swimming grades defined by the national and regional swimming maps 

were reasonably consistent. Differences between the swimming maps indicate that the 

underlying spatial models are sensitive to the input data including the numbers and 

combinations of sites that are included. In addition, it was shown that the swimming grade for 

a site can differ depending on the time-period of the assessment. All swimming maps are 

therefore only indicative of the general pattern of human health risk associated with rivers. 

Modelled swimming grades shown for specific locations on the maps are uncertain. The most 

reliable grades are those derived for specific SoE sites from monitoring data. The estimated 

quantity of swimmable rivers or rivers belonging to a specific grade as represented by 

swimming maps should be regarded as indicative. 

2. Year-round versus bathing season data  

Swimming grades for individual SoE sites derived from 10 years of year-round data were 

compared with grades defined from the same time-period but restricted to data for the bathing 

season (summer months). These comparisons indicated that a larger proportion of sites were 

swimmable (grade ‘fair’ or better) during the bathing season than year-round (59% versus 

55%). However, small headwater rivers (order 1, 2 & 3) tended to have lower swimming grades 

(i.e., less suitable) in the bathing season compared to their year-round grades. By contrast, 

large rivers (order 4 and greater) tended to have better swimming grades in the bathing season 

compared to their year-round grades. The reasons for these differences were not investigated.  

Because of the generally poorer swimming grades for small rivers during the bathing season, 

the bathing season swimming map indicates that only 17% of all rivers (by length) are 

swimmable. However, the bathing season swimming map indicates that 36% of large rivers 

are swimmable, which is consistent with the year-round regional swimming map. 

3. Water quality trends  

The study analysed trends for the seven and 10-year time-period in three E. coli statistics that 

are used to define swimming grades: the median and the proportion of samples exceeding 260 

and 540 E. coli 100mL-1 (referred to as the G260 and G540). The trend in the median value 

was evaluated by conventional trend analysis, which assessed the change through time of 

monthly E. coli samples. The trend in G260 and G540 was evaluated by calculating the annual 

values in these statistics for each site and assessing the change in these values through time. 

Because the G260 and G540 trends were based on annualised values, the analyses had lower 

statistical power than the assessments of trends in the median. Additional trend analyses were 

performed for the seven-year dataset on measured monthly data describing three water quality 

variables that reflect sediment contamination: visual clarity, suspended sediment 

concentration and turbidity.  

When considered on an individual site basis, a large proportion of trends in all four variables 

for both time-periods were uncertain (i.e., trend direction misclassification error risk > 5%). For 

example, median E. coli trends for the 69 sites analysed over 10-year time-period, were 

uncertain at 75% of sites and were improving and degrading at only 14% and 10% of sites 

respectively (i.e., trend direction misclassification error risks < 5%). Consistent with the lower 

statistical power for the G260 and G540 measures of E. coli, the 10-year period trends were 

improving at 10% and 6% of site respectively and were degrading at 0% and 4% of sites 
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respectively. There were similarly high proportions of uncertain trends for all variables for the 

seven-year time-period. 

When the traditional confidence level of 95% was relaxed there was a clear pattern of 

improving trends across all variables for both time periods. For example, the proportion of 10-

year trends that were at least as likely as not to be improving were 65%, 81% and 80% for 

median E. coli, G260 and G540 respectively. For the seven-year time-period, the proportion of 

trends that were at least as likely as not to be improving were 72%, 91%, 81%, 78%, 99% and 

95% for median E. coli, G260, G540, clarity, SSC and turbidity respectively. Thus, the trend 

analyses of SoE sites provide strong evidence of regional improvement in the water quality 

measures over the past decade. 

Spatial modelling was used to determine associations between trend direction and catchment 

characteristics. The direction of trends at all SoE sites was used to inform these models 

irrespective of the misclassification error risk. The logic for this is that over many sites, incorrect 

classifications of direction cancel (i.e., as many sites will be misclassified as increasing, as 

sites misclassified as decreasing). The spatial models for all water quality variables over both 

time periods were consistent in associating the highest probability of improving trends with hill-

country catchments of moderate size (area ~500 km2) and dominated by soft sedimentary 

geology and pastoral land cover. This is evidence for positive benefits associated with HRC’s 

interventions because farms in the types of catchments that the association describes have 

been targeted for interventions aimed primarily at reducing erosion by the sustainable land use 

initiative (SLUI). Since 2006, 683 whole farm plans (on ‘SLUI farms’) have been developed, 

with approximately 80–85% having implemented some on-the-ground works to control or 

mitigate erosion and sediment loss.  

To estimate the change in swimming grades across all rivers through time, the spatial models 

of trend direction were combined with the spatial models that underlie the regional swimming 

maps. The combination of models indicated that over the 10-year period the region’s rivers in 

the swimmable category (grades ‘fair’ to ‘excellent’) increased from 35% to 40% (a 5% 

improvement). Large rivers (order 4 and above) increased from 33% to 43% (a 10% 

improvement). For the seven-year period, modelling indicated the region’s rivers in the 

swimmable category increased from 35% swimmable to 40%, (a 5% improvement). Over the 

seven-year period, large rivers (order 4 and above) increased from 36% to 44% (an 8% 

improvement).  

All spatial modelling carried out by this study was associated with large site-scale uncertainties. 

In addition, the predicted increases in swimmable rivers was based on the combination of two 

sets of spatial models, for which the combined error could not be quantified. Therefore, the 

swimming grade maps and changes in swimming grades produced by this study should be 

regarded as indicative. 

4. Association between water quality trends and interventions 

HRC have implemented a range of water quality interventions aimed at improving water quality 

in the region since 2004. This study investigated the relationship between those interventions 

and trends at SoE sites in median E. coli, G260 and G540 for the 10-year period and median 

E. coli, G260, G540, clarity, SSC and turbidity for the seven-year period. The analysis of 

associations was possible because HRC had maintained records of the actions that included 

the geographic location. This highlights the value of not only water quality monitoring, but also 

monitoring and recording management actions.  

The results showed weak but statistically significant associations between improving trends 

for all water quality variables and the proportion of catchment involved in SLUI farm plans. 
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There were also significant associations between improving water quality and additional HRC 

initiatives associated with riparian planting and new fencing. 

The statistical models that were used to test the association between water quality 

improvement and interventions controlled for the land areas that were subject to erosion in 

2004. This indicates that improving water quality is not only associated with natural processes 

of recovery from the events in 2004.  

HRC water quality monitoring data includes sites that represent effluent discharges directly 

(discharge sites) and the in-river impact of these discharges some distance downstream of the 

discharge point (impact sites). Analysis of trends at paired discharge-impact sites indicated 

that trend directions at impact sites were significantly associated with trend directions at 

discharge sites. In addition, the analysis indicated a strong regional pattern of water quality 

improvement associated with point source discharges. Overall, the analysis provided strong 

statistical evidence of water quality improvements associated with upgrading point source 

discharges throughout the region. 

The analysis of the associations between trends and interventions is based on correlations 

and cannot prove that the interventions caused the water quality changes. The associations 

may be confounded by other factors such as changes in land use intensity and climate (which 

the study showed had varied over the last decade). However, several independent analyses 

undertaken by the study found associations between trends and interventions and that the 

water quality changes are consistent with expectations. The study therefore provides weak but 

positive evidence that HRC’s interventions have contributed to the observed improvements 

and suggests that a package of mitigation measures implemented at many locations across a 

region can produce regional scale water quality improvements.  
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1 Introduction 

The contamination of freshwater with pathogens and sediment is a national water quality issue 

due to the impacts on human use and ecological values. The National Policy Statement – 

Freshwater Management (NPS-FM (Ministry for the Environment, 2017a) has changed the 

regulations associated with managing human health values in freshwater. The changes 

include introducing a new attribute in the National Objectives Framework (NOF) that defines 

‘swimming grades’ from excellent (A) to poor (E). In addition, ‘national swimming maps’, 

showing estimated swimming grades for all large rivers in New Zealand, were used to set 

targets for improving the total length of ‘swimmable’ freshwaters nationally. The NOF does not 

currently contain attributes related to sediment contamination but potential sediment attributes 

have been under active development since 2014 (Ministry for the Environment, 2015). Due to 

its impact on compulsory values, sediment contamination of freshwaters is a requirement of 

the NPS-FM irrespective of the existence of specific sediment-related NOF attributes. 

Assessment of the state of freshwaters with respect to human health risk and sediment 

impacts and evaluation of interventions aimed at improving water quality are therefore of 

interest both nationally and regionally.  

River water quality is measured at long term state of environment (SoE) monitoring sites at 

approximately 800 locations nationally. The measurements are used to quantify the current 

state and changes in state over time (trends) (e.g., Larned et al., 2015). Human health risk is 

indicated at these sites by the concentration of Escherichia coli (E. coli). E. coli is an indicator 

of human or animal faecal contamination and the risk of infectious human disease from 

waterborne pathogens. Statistics that are derived from E. coli data are used to define 

swimming grades, which indicate the level of risk to humans who use the river for recreation 

(e.g., swimming) and other activities (e.g., kai gathering). The concentration of suspended 

sediment determines several aspects of water quality that have implications for both human 

use and ecological values. Suspended sediment can affect organisms living in the water 

directly by clogging gills and causing abrasion. In addition, suspended sediment alters the 

optical properties of water resulting in changes in colour, light penetration and visual clarity. 

The state of water quality with respect to sediment contamination at SoE sites is generally 

indicated by measurements of suspended sediment concentration (SSC), visual clarity (clarity) 

and turbidity. The state and trends indicated by E. coli, clarity, SSC and turbidity at a site are 

relevant to water quality management, including understanding the impact of land use 

intensification and improvement in conditions that may arise from interventions (i.e., 

mitigations).  

Horizons Regional Council (HRC) undertakes river water quality monitoring at 224 sites in the 

Manawatū-Whanganui region. In addition, over the past 10 years HRC have initiated a range 

of interventions aimed at improving water quality in the region including upgrading discharges 

and land management initiatives. It is expected that these interventions will have improved 

water quality including reducing E. coli concentrations and reducing sediment discharges. The 

combination of ongoing monitoring and the interventions provided the opportunity to quantify 

the changes to water quality and asses the effectiveness of management. The information is 

of interest to the region and can also provide insights for national water management  

This study investigated improvements in river water quality measures that indicate sediment 

contamination (clarity, SSC and turbidity) and human health risk (E. coli concentration). There 

were three key aspects to the work. First, the state of the rivers with respect to the four water 

quality measures was assessed. Spatial modelling was undertaken that allowed the length of 
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rivers in each swimming grade to be quantified. This type of spatial model was used to produce 

national swimming maps that informed the policies and national targets that are now part of 

the NPS-FM (Ministry for the Environment, 2017a). Use of modelling to transform site scale 

water quality measurements to regional estimates of state will be integral to reporting on 

current conditions in the future and assessing progress toward targets. This study has 

considered and further developed the modelling techniques that were used in the production 

of the national swimming maps and has made some specific recommendations concerning 

the assessment of swimming grades at the regional scale. There were three questions 

concerning the national swimming maps that this study aimed to answer: 

• Do estimates of swimming grades in the region made using the national swimming 

maps agree with data and models that are specific to the Region?  

• How do results differ for rivers of order four and greater compared to rivers of all 

orders? 

• How do the river swimming grades calculated from monitoring data collected in all 

seasons compare to grades that are assessed using only data pertaining to the 

summer ‘swimming’ season (November to March)?  

The second aspect of the work involved using trend analyses to assess changes in the river 

water quality measures that indicate sediment contamination (clarity, SSC and turbidity) and 

human health risk (E. coli concentration) in the Manawatū-Whanganui region. The analyses 

extended the use of statistical spatial modelling to the spatial modelling of trends and used 

this to develop methods to estimate spatial changes in water quality across the Region. In 

addition, this study considered issues associated with flow adjustment of water quality data 

and made some specific recommendations concerning future trend analyses. 

The third aspect of the work involved analyses of the association between river water quality 

trends and interventions that have occurred in the region over the last decade.   
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2 National swimming grades and maps 

2.1 Swimming grades 

The NOF attribute table for E. coli in the NPS-FM (Ministry for the Environment, 2017a) defines 

swimming grades for water quality monitoring sites. The swimming grade provides an 

assessment of the average level of risk to human health associated with swimming 

(immersion) at a site. The concentration of E. coli has been linked to the risk of infection by 

the pathogen Campylobacter through a quantitative microbial risk assessment (QMRA: 

(McBride, 2016; Ministry for the Environment, 2017b). The actual level of risk on a particular 

day is quantifiable by a sample on that occasion. This NPS-FM establishes the requirement 

to carry out surveillance monitoring of this risk at primary contact sites. The NOF does not 

define attributes for any water quality measures that are related to sediment; however, NOF 

attributes for sediment are currently being developed (Ministry for the Environment, 2015). 

Although there are guideline values for sediment related water quality measures (e.g., (MFE, 

1994), these do not have the statutory significance of NOF attributes. Therefore, in this study 

observed or modelled values of clarity, SSC or turbidity have not been expressed as grades. 

The NPS-FM human health for recreation attribute table defines the swimming grade at a site 

based on four statistics derived from E. coli measurements: median, percentage of 

exceedances over 540 E. coli 100mL-1, percentage of exceedances over 260 E. coli 100mL-1
, 

and the 95th percentile. Thresholds for each statistic are associated with a category from A 

(Excellent) to E (Poor) (Table 1). These thresholds are associated with the level of risk of 

Campylobacter infection (). The swimming grade for a site is the lowest grade indicated by the 

individual statistics. Each grade indicates the site’s average level of risk (Table 1; (Ministry for 

the Environment, 2017b). 

The 95th percentile is estimated with lower precision than the other three statistics. This 

imprecision cannot be reduced because it is inherent to the available data and varies between 

sites in association with the level of variability in the individual E. coli measurements. The 

imprecision affects the robustness of swimming grade assessments, particularly those that 

use spatial models to estimate grades at unmonitored locations (Stats NZ, 2017). A precisely 

measured 95th percentile value is consistent with the average level of risk indicated by the 

other three statistics, but an imprecise measurement may result in an erroneous allocation of 

a site to a swimming grade. Because this study used spatial modelling to make region-wide 

assessments of swimming grades, the 95th percentile statistic was not used to assess 

swimming grades.   
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Table 1. The statistical measures used to define the swimming grades in this study. The 

grade that applies at a site is the lowest category over the three statistics. Note that the 

fourth NPS-FM criteria (95th percentile) was excluded.  

Category Colour 

Median E. coli 

100 mL-1 

Exceedance of 

260 E. coli 100 

mL-1 (G260) 

Exceedance 

540 E. coli 

100 mL-1 

(G540) 

Average risk of 

campylobacter 

infection  

A (Excellent) Blue ≤130  ≤0.2 < 0.05 <1% 

B (Good) Green ≤130 0.2 – 0.3 0.05-0.1 <2% 

C (Fair) Yellow ≤130 or less 0.2 – 0.34 0.1 - 0.2 <3% 

D (Intermittent) Orange > 130 0.3 – 0.5 0.2 – 0.3 >7% 

E (Poor) Red > 260 > 0.5 > 0.3 >12% 

 

2.2 Definition of national swimming maps 

National swimming maps for rivers are based on the E. coli regression modelling approach 

outlined in (Snelder et al., 2016a) and in section 4.5.1 of this report. Separate models were 

constructed for each of the three statistics outlined in Table 1 and were used to predict the 

values of each statistic for each segment of a digital representation of the national river 

network1. The grades shown on the swimming maps were derived by categorising segments 

for each of three statistics according to the criteria in Table 1 and assigning the segment’s 

swimming grade as the lowest category. Some adjustments were made to the assessed 

grades at segments that were associated with monitoring sites to ensure the map was 

consistent with measured values at those locations (see MFE, 2017, Swimming Committed 

Work Report for details). 

                                                
1 River Environment Classification version 1 
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3 Data 

3.1 Water quality data 

Of the 231 water quality monitoring sites operated by HRC, 143 can be regarded as state of 

environment (SoE) sites, meaning their water quality is broadly representative of conditions in 

the region and have been regularly measured for a number of water quality variables (Figure 

1). Discharge sites represent treated wastewater prior to it being discharged to the river. 

Discharges are monitored at 35 sites across the region (Figure 1). River water quality 

downstream of point sources is monitored at 53 ‘impact’ sites (Figure 1). Many of the discharge 

sites are upstream of (and therefore linked to) impact sites. 

 

Figure 1. Map showing location of the river water quality monitoring sites in the Region. Grey 

lines represent main stem rivers (stream order of 4 or greater).  

E. coli clarity (measured in the field using a black disc), turbidity, and suspended sediment 

concentrations (SSC) have been measured at130 SoE, 30 discharge and 48 impact sites in 

the region (Table 2). All E. coli measurements in the dataset used in this study were analysed 

using the maximum probably number (MPN) method. Turbidity was measured in the laboratory 

using three types of method; EPA (26,000 data points), ISO FNU (8,507 data points) and ISO 

NTU (8,343 data points). In this study it has been assumed that all turbidity measurements 

are commensurate. The laboratory analyses of SSC have varied over time and include the 

following methods; APHA (2005) 2540 D, APHA 21st Edition Method 2540 D modified and  

ASTM D3977-97. In this study it has been assumed that all SSC measurements are 

commensurate. 

Data for these sites were obtained from the HRC water quality database. E. coli  was included 

in this study because it is a measure of human health risk and statistics derived from E. coli 

measurements are the basis for swimming grades. Clarity, turbidity and suspended sediment 

concentration (SSC) are included primarily because they represent the effects of sediment 

contamination on water quality. Sediment enters freshwater via runoff processes in a similar 

way to E. coli (McDowell et al., 2008). Therefore, inclusion of the sediment-related variables 

provides additional evidence of water quality changes associated with human health risk and 
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their association with management (including interventions). The sediment-related variables 

also have relevance to the suitability of water for human contact recreation, however they are 

not used in the assessment of swimming grades.  

Table 2. Water quality variables included in this study. 

Variable Abbreviation Units 

Escherichia coli  E. coli MPN 100 mL-1 

Visual clarity (black disc) Clarity m 

Turbidity Turbidity NTU 

Suspended sediment 

concentration 
SSC g m-3 

 

The water quality data included the site name, date, water quality variable and the measured 

value. For all variables, some true values were too low or too high for laboratory or field-based 

methods to measure with precision. These measurements are called censored values. For 

very low values of a variable, the minimum measurement with acceptable precision 

corresponds to the “detection limit”. For very high values of a variable, the maximum 

measurement with acceptable precision corresponds to the “reporting limit”. The data included 

measurements that were below detection and above reporting limits for E. coli, clarity and 

turbidity. Cases in the HRC dataset where values of variables were below the detection limit 

or above the reporting limit were indicated by the prefix to recorded values “<” and “>” 

respectively.  

The duration of sampling across all SoE sites and variables in this study varied between 1 and 

25 years (Figure 2). Sampling start years were variable between sites. Sampling of clarity and 

E. coli started at many sites in 2005 and 2006, but most turbidity and SSC sampling did not 

start until 2010 (Figure 2). The total number of samples varied between SoE sites, partly 

reflecting variation in the number of years that the variables had been measured and partly in 

association with differences in sampling frequency. Although SoE sites tended to have 

monthly measurements for most variables, there were often multiple measurements of 

variables at a site within months. Most SoE sites had a low proportion of samples having 

censored values for turbidity and E. coli (Figure 2). The proportion of censored values was 

generally higher for clarity and SSC for which there were sites with more than 10% of values 

being censored (Figure 2).  

River water quality can be strongly associated with flow, and this can influence trend analysis. 

The effect of flow can be accounted for in analysis of trends by flow adjustment (see Section 

4.4.4). Most of the 130 SoE water quality monitoring sites (between 97 and 130 sites 

depending on variable) had flow records for at least some sample occasions; these data were 

obtained from HRC. Of the 130 SoE sites, between 14 and 25 had flow measurements 

corresponding to every sample, and between 28 and 40 sites had flow data for >80% of 

samples, depending on the variable. Flows for each water quality monitoring site were either 

measured at a gauge that was located at, or close to, the monitoring sites or at a ‘proxy’ gauge 

that may be located some distance away.  
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Figure 2. Histograms describing the available data for the 130 SoE river water quality 

monitoring sites.The histograms describe, for each variable, the number of measurements of 

each variable (No.Samples), the proportion of censored values (Prop.censored), the 

proportion of samples with associated measurement of flow (Prop.flow), the duration of the 

sampling period (No.years), the start and end year of the samples (StartYear, EndYear).  

3.2 Data describing interventions and potential covariates 

3.2.1 Sustainable land use initiative 

The Manawatū-Whanganui region experienced a major storm event in February 2004. Rainfall 

exceeded a 150-year return period over the mid-catchment hill country areas of much of the 

region resulting in widespread erosion and flooding (Schierlitz and Dymond, 2006). The event 

prompted the Sustainable Land Use Initiative (SLUI), which seeks to implement whole farm 

plans specifically tailored to manage areas of highly erodible land. The SLUI programme has 

four objectives: reduce hill country erosion rates to natural levels; increase the resilience of 

the regional economy to future major storm events; protect lowland communities from the 
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impacts of erosion; and to improve water quality. Actions that are undertaken on SLUI farms 

include: retirement of land, fencing, and erosion planting. Modelling indicated that 

implementing farm plans on 500 of the most erosion-prone farms would reduce the current 

regional sediment load by 47% with average reductions in sediment over all catchments of 

27% by 2040 (Schierlitz and Dymond, 2006). The reduction in sediment loads can be expected 

to result in improving trends in the four water quality variables considered by this study (E. 

coli, clarity, turbidity and SSC).  

Since 2006, 683 whole farm plans (on ‘SLUI farms’) have been developed, with approximately 

80–85% having implemented some on-the-ground works to control or mitigate erosion and 

sediment losses (Manderson et al., 2015). The SLUI farms (Figure 3) cover a total area of 

493,650 ha (comprising approximately 22% of the region). Areas of the region that were 

categorised as subject to erosion after 2004 covered 16,937 ha. These areas may also be 

associated with water quality trends because healing of erosion scars may have contributed 

to improvements in water quality over the intervening period. GIS data were obtained from 

HRC that mapped the SLUI farms and land areas that were designated as subject to erosion 

in 2004 (Figure 3 and Figure 4). 
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Figure 3. Location of SLUI farms throughout the region. The map indicates 683 ‘SLUI farms’ 

for which whole farm plans have been developed. 
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Figure 4. Area subject to erosion in 2004. 

3.2.2 Fencing and planting initiatives 

Since 2010, HRC has funded and supported a freshwater environmental grant programme 

that promotes fencing and riparian planting on streams on agricultural land. HRC targets 

freshwater intervention work programmes based on consideration of a range of factors, 

including the likely vulnerability of catchments and receiving environments to pressures such 

as the proportion of land under intensive land use, erosion, hydroelectric schemes, existing 

fencing and planting, nutrient loss through leaching and run-off, wastewater discharges and 

contaminated sites such as landfills. Catchments are targeted if current water quality and 
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biomonitoring indicates either degrading trends or degraded state. In addition, catchments and 

receiving environments are targeted if they have been identified as having specific community 

values (as identified in the One Plan, community engagement, Manawatū River Leaders’ 

Accord and Lake Horowhenua Accord Action Plans), or are catchments subject to nutrient 

management under the One Plan. Finally, because these interventions are generally non-

regulatory, catchments and receiving environments are targeted if the community is willing to 

invest in interventions.  

HRC has maintained a geospatial database recording the location and extent of fencing (linear 

metres) and planting (area). A copy of this database was provided for this study from HRC 

(Figure 5 and Figure 6). 

 

Figure 5. Location of fencing work throughout the region. 
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Figure 6.  Location of planting work throughout the region. 

3.2.3 Climate and flow 

Trends in water quality variables may be at least partially attributable to climate effects. 

Climate may affect the water quality variables of concern in this study in a variety of ways. The 

main mechanism of mobilisation and transport of E. coli and sediment is associated with 

episodic runoff and high flows (McDowell et al., 2014). These processes are complex, and it 

was beyond the scope of this study to undertake a detailed analysis of the association between 

trends and climate or flows. However, trends in mean annual rainfall and mean annual flows 

were analysed for representative stations through the same periods as the trend analyses 
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performed on the water quality variables. The results of these analyses provided an indication 

of the extent to which climate and flows varied through the periods and allowed a qualitative 

evaluation of extent to which these natural processes may be associated with trends.  

Annual rainfall and daily flow data were obtained for 13 and 15 long term climate and flow 

recording stations, distributed throughout the region from HRC, respectively (Figure 7). The 

mean annual daily flows were converted to mean flow for the 15 flow recording stations in 

each year of record to make them comparable to the annual rainfall statistics.  

 

Figure 7. Map showing location of the river flow recorder and climate stations in the Region. 

Grey lines represent main stem rivers (stream order of 4 or greater). 
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4 Methods 

4.1 Categorisation of sites 

Sites were categorised into three types: discharge, impact and state of environment (SoE) 

sites (Figure 1). Discharge and impact sites represent specific point source discharges or 

locations downstream of significant and specific point sources, respectively. SoE sites are 

located at points in the river network that are not significantly affected by point source 

discharges so that they reflect water quality arising from diffuse and widespread sources of 

contaminants.  

The three categories of sites were used and analysed differently in the study. SoE sites were 

assumed to be representative of general regional water quality conditions. State and trends 

were evaluated at SoE sites and were used to make inferences about water quality conditions 

across the entire region including estimating the length of rivers in different swimming grades 

(see Section 4.2). Trends were evaluated at discharge and impact sites to provide information 

about the association between river water quality trends and interventions that have occurred 

in the region over the last decade (see Section 4.7). Neither state nor swimming grades were 

evaluated at the discharge or impact sites because these sites are atypical of general 

conditions.  

4.2 Sampling dates and time-periods for analyses 

The analyses that follow concern two characterisations of water quality: state and trend. For 

each variable, the state at SoE sites was characterised by statistics that were calculated from 

the samples, for example the median value. The trend at all sites (SoE, discharge and impact) 

was characterised by the rate of change of the variable (or a statistic estimated from the 

variable; see Section 4.4) through time.  

Because water quality changes through time, both the state and trend depend on the time-

period over which the state and trends are assessed (e.g., Ballantine et al., 2010; Larned et 

al., 2016a). Therefore, state and trend assessments are specific for a given period of analysis. 

In this study, state and trends were characterised for two time-periods. The statistical 

robustness of determinations of water quality state and trends depends on the variability in 

the measurements through the time-period and on sample size (i.e., the number of sampling 

dates). As a general rule, the rate at which confidence increases for estimates of population 

statistics levels off above a sample size greater than 30 (i.e., above this size there are 

diminishing returns on increasing confidence with increasing sample size; McBride, 2005). 

Because water quality data tends to be seasonal, it is also important that each season is well 

represented over a period of record. In this study, seasons were generally represented by 

months because most sites have been sampled monthly over the past decade. However, 

because formerly quarterly was a common sampling interval and because some sites have 

been sampled less frequently, some of the analyses presented below represent seasons by 

quarters.  

The dataset had variable starting and ending dates, variable sampling frequencies, and 

variable numbers of missing values. Because the analyses that follow are concerned with 

assessing regional patterns in state and trends, it was important to maintain the maximum 

number of sites over the longest time-period, while ensuring the characterisation of state and 

trends for those sites were as robust and precise as possible. Filtering rules were therefore 

used to achieve a reasonable trade-off between length of time-period, sample size and 

numbers of sites. In addition, analyses performed on the grouped results of site trends used 
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all results irrespective of the level of certainty of the individual trends (see Section 4.6 and 

4.7.2). The filtering rules ensured that a reasonable number of samples informed all trends.  

In a recent national analysis, Larned et al. (2015) used filtering rules that restricted site and 

variable combinations that were analysed for trends in a given time-period such that there 

were measurements for at least 90% of the years and at least 90% of seasons. This study 

adopted similar filtering rules but with criteria relaxed to 80% of years and sample seasons, 

as suggested by Helsel and Hirsch (1992). All site by variable combinations that did not comply 

with these filtering rules were excluded from the analysis.  

The two time periods evaluated by this study were determined by examining the trade-off 

between the number of qualifying sites (i.e., sites that met the filtering rules concerning missing 

measurements) and the time-period. The trade-off between length of time-period and numbers 

of sites was assessed based on treating the data as both monthly and quarterly samples. 

4.3 Analysis of state and swimming grades 

For each time-period, the state at each SoE site was characterised using statistics calculated 

from the water quality measurements. Three E. coli statistics were calculated for each site: 

the median E. coli concentration and the proportion of samples that exceeded 260 and 540 E. 

coli 100 mL-1 (referred to as G260 and G540, respectively2). For clarity, turbidity and SSC the 

state at each site was characterised by the median of the measurements.  

For each time-period, the swimming grade for each site was assessed using the three E. coli 

statistics (i.e., median, G260 and G540). For each site, a grade was calculated for each 

statistic based on the thresholds shown in Table 1. A final grade was then assigned to each 

site as the lowest grade achieved by the three statistics. Hence, if a site’s grades for the 

median, G260 and G540 were “Good”, “Fair” and “Good”, respectively, then the final site grade 

was “Fair”.  

The swimming grade at each SoE site was also characterised using the three E. coli statistics 

(i.e., median, G260 and G540) calculated from samples pertaining to the summer ‘swimming’ 

season (1st November to 31st March). To ensure maximum precision, the summer season E. 

coli statistics were calculated for the longest time-period only. The swimming grade for each 

site was calculated from the three statistics based on the thresholds shown in Table 1. The 

grade at each site for the summer season was compared to the grade derived from the whole 

record for the longest time-period.  

4.4 Analysis of trends 

4.4.1 Input data 

The trend analyses conducted in this study determined the rate of change in the central 

tendency of the measurements through the time-period. The underlying model considers 

monotonic change and the analysis is non-parametric so the measured trend represents rate 

of change of the median of the data. Trends were evaluated for median E. coli, clarity, turbidity 

and SSC at SoE, discharge and impact sites by conducting analyses based on all samples 

                                                
2 This nomenclature follows from (Elliott and Whitehead, 2016) and is based on the use of F to signify the cumulative frequency 

distribution (F(x) is proportion of time that the variable is less than x). G(x) is used here to represent the proportion of the time 

that the variable is greater than x. (Snelder et al., 2016a) used the abbreviations PropGT260 and PropGT540 to represent 

G260 and G540.  
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through each time-period. The results were interpreted as the annual rate of change of the 

median value.  

The E. coli statistics G260 and G540 were only analysed at SoE sites. Trends in the G260 

and G540 were evaluated by first calculating the annual values of G260 and G540 as the 

number of samples that exceeded 260 and 540 E. coli 100mL-1 in each calendar year divided 

by the number of samples in that year. The trend in the time series of annual values was 

analysed for each site and statistic and interpreted the results as the annual rate of change of 

G260 and G540 through the period. 

4.4.2 Missing data and censored values 

Trends are most robust when there are few censored values in the time-period of analysis. It 

has been common to substitute the censored values with 0.5×detection limit and 1.1×reporting 

limit. Although common, replacement of censored values with constant multiples of the 

detection and reporting limits can result in misleading results when statistical tests are 

subsequently applied to those data (Helsel, 2012).  

In a recent national analysis, Larned et al. (2015) substituted censored values with values that 

were imputed from the data. In that study, the effect of censored values and missing data on 

the evaluated trend magnitude was minimal because sites and variable combinations were 

restricted to those for which the number of censored values was < 15% of the total number of 

observations. Imputation of censored values is an accepted method for obtaining sample 

statistics (e.g., mean values and standard deviations). The use of imputed values in trend 

analysis by Larned et al. (2015) was not strictly correct because the imputation process cannot 

account for the time order of samples. However, the restriction rules avoided making incorrect 

determinations of trend magnitude because this quantity is unaffected by censoring when 

fewer than 15% of the data are censored values.  

A different approach to dealing with censored values and missing data to that of Larned et al. 

(2015) was adopted in this study. The approach was based on recent consideration of how to 

handle censored values in trend analysis, a procedure that has been implemented within the 

TimeTrends software (Jowett, 2017). The approach does not restrict analysis of sites based 

on censored values. Instead, it allows the analysis to indicate if there is sufficient data to 

produce a conclusive result. This is possible because the implementation of trend analysis by 

the TimeTrends software does not impute3 replacement values for censored values. In 

general, the TimeTrends software treats censored values as unknown and does not use them 

in trend analyses. This means that when there are many censored values (and missing data), 

the analysis returns an inconclusive result. In cases where there are many missing or 

censored values TimeTrends will not analyse the data. These cases are reported as “not 

analysed” in the results (see Section 4.4.5).  

Some of the analyses that follow use the evaluated trend slope directions and magnitudes 

irrespective of the statistical confidence in these evaluations (see Section 4.6). The use of all 

the evaluated trend assessments (irrespective of whether the analyses were certain regarding 

individual trend directions) is robust due to the filtering rules (described in section 4.2) applied 

to each site and variable combination.  

                                                
3 However, note that TimeTrends does impute replacements for censored value for calculation of descriptive statistics. The 

default option applies robust “regression on order statistics” (ROS) to left censored values and Kaplan–Meier (K-M) to right 

censored values for these calculations. 
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4.4.3 Trend analysis 

The method used for statistical trend analyses in this study differs from the approach used in 

previous analyses of water quality data (e.g., Ballantine et al., 2010). In the previous studies, 

the non-parametric Sen slope estimator was used with the Kendall trend test, and trends were 

determined to be statistically “significant” or “insignificant”. Two key problems with the previous 

(“traditional”) approach were identified by Larned et al. (2015):  

1) conclusions about the significance of trends are strongly influenced by sample size in 

addition to trend magnitude;  

2) the failure to reject the null hypothesis is often incorrectly treated as evidence that there 

is no trend (e.g., that water quality conditions are “stable” or “being maintained”).  

To overcome these problems, Larned et al. (2015) developed a new trend assessment 

method. Briefly, confidence intervals are used to draw inferences about trend direction; if a 

symmetric confidence interval around the trend (estimated using the Sen slope estimator) 

does not contain zero, then the trend direction (either positive of negative) is “established with 

confidence”. If it does contain zero, it is concluded that there are insufficient data to determine 

the trend direction and the assessment is that the trend is “uncertain”.  

In this study, trend assessments for all variables were based on a Sen slope estimator (SSE), 

which expresses trends in units reflecting the change in the variable per year. When there is 

seasonal variation in the observations, the seasonal Sen slope estimator (SSSE) should be 

used (Hirsch et al., 1982). Because the seasonal estimator has lower statistical power than 

the non-seasonal estimator (due to smaller sample sizes), it is important to establish whether 

data are seasonally varying. Therefore, where the trend in the median value was being 

assessed, the trend analysis commenced by testing for the effect of season (i.e., month) on 

each site and variable combination using a Kruskal Wallis test. When there was a statistically 

significant effect (p < 0.05) of season on the value of a variable, the SSSE was evaluated (the 

Seasonal Kendall analysis in the TimeTrends software). For the two annual values (G260 and 

G540), and where the trend in the median was being assessed but the effect of season was 

not significant (Kruskal Wallis p > 0.05), the SSE was evaluated (the Mann-Kendall analysis 

in the TimeTrends software). 

To help understand the implications of shifting from the traditional trend analysis procedures 

to the procedures used in this study, trends were also tested using the traditional Kendall test 

of correlation. The results of the Kendall tests for all sites and variables are included in the 

supplementary files for trend analyses.  

All trends (i.e., SSE and SSSE) were quantified by relative Sen slope (RSS), which is the 

annual rate of change divided by the median value of the variable over the time-period (% 

year-1). The standardisation associated with the RSS value allows trends for statistics 

measured on different scales, such as median E. coli, G260 and G540, to be compared. 

Sen slopes and their confidence intervals were calculated with the TimeTrends software 

(Version 6.1; http://www.jowettconsulting.co.nz/home/software). Subsequent processing and 

plotting of the TimeTrends output was undertaken using the R statistical software 

(http://www.r-project.org).  

4.4.4 Flow adjustment of river water quality variables 

Flow rate at the time that a river water quality measurement is made can affect the observed 

values because many water quality variables are subject to either dilution (decreasing 

http://www.jowettconsulting.co.nz/home/software
http://www.r-project.org/
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concentration with increasing flow) or wash-off (increasing concentration with increasing flow) 

(Smith et al., 1996). Different mechanisms may dominate at different sites so that the same 

water quality variable (e.g., E. coli) can exhibit positive or negative relationships with flow 

(Snelder et al., 2016b).  

Removing the effect of flow (or any covariate) decreases variation and increases statistical 

power (i.e., increases the likelihood of detecting a trend with certainty; Helsel and Hirsch, 

1992). In addition, a trend in a water quality variable may arise because there is a relationship 

between time and flow on sample occasion (i.e., a trend in the flow on sample occasion such 

as increasing or decreasing flow with time). Removing the effect of flow may change this 

trend’s direction and/or magnitude. Previous studies have often provided trend analyses 

based on both flow adjusted and raw data (e.g., Ballantine et al., 2010; Larned et al., 2015). 

The appropriate interpretation of the two sets of results by previous studies has been unclear 

(e.g., Ballantine, 2012).  

Flow adjustment requires that water quality samples are associated with the flow at the time 

of sampling. In this study, flow data was not available for all sites, or for all sample occasions 

at most sites. To be consistent, trends were all evaluated from raw (i.e., non-flow adjusted) 

data for all sites. Tests of whether conclusions would have differed substantially if trends had 

been evaluated using flow adjusted data were carried out by examining differences between 

raw and flow adjusted trends for a subset of sites and variables for which flow data was 

available for at least 80% of sample occasions. These tests and further consideration of flow 

adjustment are detailed in Appendix B. The tests for the subset data indicated that differences 

in trend directions and magnitudes derived from raw and flow adjusted data were not large. It 

was concluded that the overall findings of this study would not be appreciably different were 

the analysis to be performed using flow adjusted data. 

4.4.5 Interpretation of trends 

Outputs from the TimeTrends analysis were processed to classify the trend obtained for each 

site and variable combination. Trends were classified into four categories: increasing, 

decreasing, uncertain and not analysed. An increasing or decreasing trend category was 

assigned when the 90% confidence interval did not contain zero and the Sen slope was 

positive or negative, respectively (i.e., the trend direction is established with confidence; 

Larned et al., 2016b). An uncertain trend category was assigned when the 90% confidence 

interval contained zero. It is noted that if the 90% confidence interval does not contain zero, 

the trend direction is established with 95% confidence4. Trends will be classified as “not 

analysed” for three reasons, only the second of which occurred in this study: 

1) Trends cannot be assessed when a large proportion of the values (approximately 

>80%) are censored. This arises because trend analysis is based on examining 

differences in the value of the variable under consideration between all pairs of sample 

occasions. When a value is censored, it cannot be compared with any other value and 

the comparison is treated as a “tie” (i.e., there is no change in the variable between 

the two sample occasions). When there are many ties there is little information content 

in the data and a meaningful statistic cannot be calculated. 

                                                
4 To achieve a 95% confidence level the procedure uses symmetric intervals at the 90% level, not 95%. The rationale is fully 

explained in Appendix 1 of Larned et al. (2015). Briefly, this arises because the new direction-testing procedure uses a two 

one-sided (“TOST”) methodology, rather than the traditional single “two-sided” method. A notable and beneficial feature of this 

is that it makes the test more powerful than the traditional two-sided approach. 
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2) Trends cannot be assessed when there is no, or very little, variation in the data 

because this also results in ties. The annual values for G260 and G540 had little 

variation or a large proportion of zero values at some sites.  

3) The laboratory analysis of some variables has low precision (i.e., values have few or 

no significant figures). In this case, many samples have the same value and this then 

also results in ties.  

The evaluation of the trend direction by the new confidence interval approach facilitates a 

more nuanced inference rather than the ‘yes/no’ output for the chosen acceptable 

misclassification error rate of 5%. The approach produces the probability that a trend has a 

given direction. Trends are declared to be “confidently” detected when direction is established 

with 95% certainty (following the traditional alpha value of 0.05). This means that the 

acceptable misclassification rate is 5%. However, if there is insufficient data to infer the 

direction of a variable’s trend at a minimum of 95% confidence, the direction can be 

determined with lower levels of confidence and a categorisation can be used to convey that 

information. This study has used the approach to presenting levels of confidence of the 

Intergovernmental Panel on Climate Change (IPCC; Stocker et al., 2014) to convey the 

certainty of trend directions (Table 3). The categorical levels of confidence were used to 

express the likelihood that water quality was improving for each site and variable. 

Table 3. Level of confidence categories used to convey the likelihood that water quality was 

improving (Stocker et al., 2014). 

Categorical level of confidence Probability (%) 

Virtually certain 99–100 

Extremely likely 95–99 

Very likely 90–95 

Likely 67–90 

About as likely as not 33–67 

Unlikely 10–33 

Very unlikely 5–10 

Extremely unlikely 1–5 

Exceptionally unlikely 0–1 

4.5 Spatial modelling of current water quality state and swimming grades 

4.5.1 Modelling approach 

The current state of all river segments in the region was modelled for both the analysed time 

periods and the E. coli statistics were also modelled for the summer swimming season 

(defined as 1st November to 31st March). Modelling used the same approach as those used to 

generate the national swimming maps (Snelder et al., 2016a) and other predictions of water 

quality at regional to national scales (e.g., Larned et al., 2016; Unwin et al., 2010). The 

approach combines the SoE site statistics with a spatial framework provided by a database 

representing the national river network (see Snelder et al. (2016a) for details). The database 

contains a range of variables that represent the characteristics of the catchments upstream of 

every segment of the river network (Wild et al., 2005). The statistical spatial models used the 

same catchment characteristics as Larned et al. (2016) and Snelder et al. (2016a) as 
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predictors in the models (Table 4). The catchment characteristics obtained from the database 

were then used to predict water quality state for all river segments in the Region.  

Table 4. Predictor variables used in spatial models. 

Predictor Abbreviation Description Unit 

Geography 
and 
topography 

usArea Catchment area m2 

usLake Proportion of upstream catchment occupied by lakes % 

usCatElev Catchment mean elevation m ASL 

usAveSlope Catchment mean slope degrees 

segAveElev Segment mean elevation degrees 

Climate and 
flow 

usAvTWarm Catchment averaged summer air temperature degrees C x 10 

usAvTCold Catchment averaged winter air temperature degrees C x 10 

usAnRainVar Catchment average coefficient of variation of annual 
rainfall 

mm y-1r 

usRainDays10 Catchment average frequency of rainfall > 10 mm days month-1 

usRainDays20 Catchment average frequency of rainfall > 20 mm days month-1 

usRainDays100 Catchment average frequency of rainfall > 100 mm days month-1 

segAveTCold Segment mean minimum winter air temperature degrees C x 10 

usFlow Estimated mean flow m3 s-1 

Geology* usHard Catchment average induration or hardness value Ordinal* 

usPhos Catchment average phosphorous Ordinal* 

usParticleSize Catchment average particle size Ordinal* 

Land cover usPastoral Proportion of catchment occupied by combination of high 
producing exotic grassland, short-rotation cropland, 
orchard, vineyard and other perennial crops (LCDB3 
classes 40, 30, 31, 33) 

Proportion 

usIndigForest Proportion of catchment occupied by indigenous forest 
(LCDB3 class 69) 

Proportion 

usUrban Proportion of catchment occupied by built-up area, urban 
parkland, surface mine, dump and transport infrastructure 
(LCDB3 classes 1,2,6,5) 

Proportion 

usScrub Proportion of catchment occupied by scrub and shrub 
land cover (LCDB3 classes 50, 51, 52, 54, 55, 56, 58) 

Proportion 

usWetland Proportion of catchment occupied by lake and pond, river 
and estuarine open water (LCDB3 classes 20, 21, 22) 

Proportion 

usBare Proportion of catchment occupied by bare ground 
(LCDB3 classes 10, 11, 12,13,14, 15) 

Proportion 

usExoticForest Proportion of catchment occupied by exotic forest 
(LCDB3 class 71) 

Proportion 

usGlacial Proportion of catchment occupied by ice (LCDB3 classes 
14) 

Proportion 

 

Relationships were fitted using random forest (RF) statistical models. RF models are a 

machine learning technique that automatically detect and fit non-linear relationships and high 

order interactions, both of which can be expected when modelling relationships between water 

quality and catchment conditions over large environmental gradients (Unwin et al., 2010). 
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Determining and specifying non-linearities and interactions in more traditional statistical 

models such as linear models or general linear models requires significant skill and insight by 

the modeller into the relationships being modelled. Because RF models automatically detect 

and fit these complex relationships, it is more likely that results generated by different 

modellers will be comparable. In addition, RF models achieve higher accuracy than more 

traditional statistical models. High predictive performance is achieved by basing predictions 

on an ensemble of single regression trees (a forest) (Breiman, 2001). Detailed descriptions of 

RF models and their diagnostic tools are described in detail in Breiman (2001) and Cutler et 

al. (2007). 

Although RF models do not depend on distributional assumptions, transformation of the 

response variable to an approximately symmetric distribution can improve model 

performance. The effect of various transformations of the water quality (i.e., response) 

variables on the model performance was investigated. Where performance was improved, 

transformations were adopted. Details of the investigations of transformations are explained 

in Appendix A.  

Fitted models were used to make predictions of the water quality variables for all 49,000 

segments representing the rivers of the Region. The predicted values of the E. coli statistics 

were used to calculate the swimming grade for all the Region’s river segments based on the 

criteria shown in Table 1. This assessment of swimming grades was compared with 

assessments made using the national predictions of the same E. coli statistics made by 

Snelder et al. (2016a), which underlie the national swimming maps. 

4.5.2 Model performance 

RF models produce a set of predictions for all cases in the training dataset that is independent 

of the fitting process and that can be used to evaluate model performance. Model performance 

was quantified by comparing the independent predictions with the observations and 

expressing the degree of agreement using five statistics: Nash-Sutcliffe efficiency (NSE; 

(Nash and Sutcliffe, 1970), bias, percent bias (PBIAS), the relative root mean square error 

(RSR) and the root mean square deviation (RMSD). NSE indicates how closely the 

observations coincide with the model predictions. NSE values range from −∞ to 1. A NSE of 

1 corresponds to a perfect match between predictions and the observations, values greater 

than 0 indicate the model has some predictive skill and values greater than 0.5 are commonly 

considered to indicate good model performance (Moriasi et al., 2007). Bias measures the 

average tendency of the predicted values to be larger or smaller than the observed values. 

Optimal bias is zero, positive values indicate underestimation bias and negative values 

indicate overestimation bias (Piñeiro et al., 2008). PBIAS is computed as the sum of the 

differences between the observations and predictions divided by the sum of the observations 

(Moriasi et al., 2007). RSR is a measure of the characteristic model uncertainty and is 

estimated as the mean deviation of predicted values with respect to the observed values 

divided by the standard deviation of the observations (Moriasi et al., 2007). RSR varies from 

the optimal value of 0, which indicates zero RMSE or residual variation and therefore perfect 

predictions, to a large positive value. RMSD is the mean deviation of predicted values with 

respect to the observed values and quantifies the characteristic uncertainty of the predictions 

(Moriasi et al., 2007). The normalization associated with PBIAS and RSR allowed the 

performance of models to be compared across all the modelled water quality variables. 

Categorical descriptions of the quality of the predictions for different values of the normalised 

performance measures that are accepted ‘rules of thumb’ are shown in Table 5 (Moriasi et al., 

2007). 
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Table 5: Quality of predictions based on performance measure values.  The categorical 

descriptions of the quality of the predictions are ‘rules of thumb’ (Moriasi et al., 2007). 

Prediction Quality NSE RSR PBIAS 

Poor x <0.5 x > 0.7 |x| > 55% 

Satisfactory 0.5< x < 0.65 0.6< x < 0.7 30%< |x| <55% 

Good 0.65< x < 0.75 0.5< x < 0.6 15%< |x| <30% 

Very Good x >0.75 x <0.5 |x| <15% 

 

RF model importance measures were used to quantify the contribution of each predictor to 

the model prediction accuracy (Breiman, 2001; Cutler et al., 2007). Partial dependence plots 

(PDPs) were used to describe the fitted predictor-response relationships (Cutler et al., 2007). 

Water quality data is frequently right skewed. Logarithmic or other transformations that 

compress the larger values have been used in previous studies to improve model performance 

(Larned et al., 2016; Snelder et al., 2005; Unwin et al., 2010). Transformations of the modelled 

response variables were similarly used in this study. Because these transformations are non-

linear the model predictions need to be corrected for re-transformation bias. In this study, the 

smearing coefficient of Duan (1983) was used to correct for back-transformation bias when 

variables were log10-transformed prior to model fitting, following the approach of Larned et al. 

(2016) and Snelder et al. (2016a). Consideration of some of the details of the transformation 

and retransformation are included in Appendix A. 

4.6 Spatial modelling of change in state 

Assessment of changes in state was made by combining the spatial model predictions of state 

with a predictive classification model of trend directions that were observed at the SoE sites. 

The modelling process comprised three steps. First, for each statistic and time-period, a 

classification model was used to discriminate sites based on observed trend direction (i.e., 

positive or negative RSS values). The classification model was fitted using RF models; the 

same type of statistical model as that used to model state but in a classification mode. The 

fitted classification models were then used to predict whether the trend directions were 

negative or positive for each variable for every segment of the river network. The predictors 

for the classification models were the same catchment characteristics used by the state model 

(Table 4). It is important to note that no predictors used by the classification models 

represented actual water quality interventions. 

Trend directions at all SoE sites were used to train the classification model, irrespective of the 

level of confidence in direction. This decision is justifiable on the basis that the confidence 

intervals are used to judge confidence in trend direction at individual sites. The choice of 

confidence interval based on the acceptable risk of making incorrect inferences about trend 

direction at individual sites is arbitrary (i.e., alpha value of 0.05 is arbitrary but is generally 

accepted). The misclassification error risk for individual sites can be disregarded when 

considering water quality trends globally (i.e., for all sites across the region) because incorrect 

classifications of direction will cancel each other (i.e., as many sites will be misclassified as 

increasing as sites misclassified as decreasing). Therefore, the “face value” of each site’s 

trend (i.e., the direction indicated RSS value) was used to train the classification model.  

Misclassification rates and receiver operating curves (ROCs) were used to evaluate the 

performance of the classification models. ROC plots show the true positive rate (sensitivity) 
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against the false positive rate (1−specificity) as the probability threshold used to classify a 

case varies from 0 to 1 (Hanley and McNeil, 1982). Good models have high true positive rates 

and relatively small false positive rates and, therefore, have ROC plots that rise steeply at the 

origin, and level off near the maximum value of 1. The ROC plot for a poor model lies near the 

diagonal, where the true positive rate equals the false positive rate for all thresholds. The 

model performance was quantified using the area under the ROC curve (AUC). AUC is a 

measure of the performance of a binary classifier, with good models having an AUC near 1, 

while a poor models will have an AUC near 0.5 (Hanley and McNeil, 1982). The following rules 

of thumb were used to express the quality of the model indicated by AUC in narrative terms: 

very good (0.9 – 0.8); good (0.8 - 0.7); satisfactory (0.7 - 0.6); poor (0.6 - 0.5). 

The second step was to adjust the spatial predictions of state for each variable (i.e., the three 

E. coli statistics, and median values for clarity, SSC and turbidity) to represent an expected 

value at the beginning and end of the time-period. The adjustment was made for each statistic 

by adding and subtracting a trend slope multiplied by half the time-period from the predicted 

value of the statistic for the entire time-period (i.e., the predicted state). Thus, if the predicted 

median value was 100 E. coli 100mL-1 and the trend was -2 E. coli yr-1, then the median at the 

start of a seven-year time-period was estimated to be 107 E. coli 100mL-1 and the median at 

the end of the time-period was estimated to be 93 E. coli 100mL-1. The trend slope used at 

each segment was equal to the median of all RSS values with either decreasing or increasing 

trends, depending on whether the classification model prediction for that segment was a 

decreasing or increasing trend. Thus, segments that were predicted to have increasing trends 

had their expected values at the beginning and end of the trend year period adjusted such that 

the rate of increase was uniform over the region and equal to the “average” (i.e., median) of 

the observed rates of increase. The same logic was applied to segments for which the 

classification model indicated a decreasing trend. Thus, two sets of spatial predictions of state 

were derived for each statistic (i.e., median, G260 and G540 of E. coli and median clarity, SSC 

and turbidity) representing the ‘expected value’ of state at the beginning and end of the time-

period.  

For the E. coli statistics, a third step calculated the swimming grade at each segment at the 

beginning and end of the time-period based on the criteria shown in Table 1. The change in 

total river length in each swimming grade over the time-period, for all segments and segments 

of order four and above, were then calculated using the stream orders and segment lengths 

that are available for the digital river network. 

4.7 Association between trends, interventions and other factors  

4.7.1 Sustainable land use initiative, fencing and planting. 

The strength of the relationship between the direction and magnitudes of trends at SoE sites 

and mitigation measures associated with three intervention initiatives was assessed. First, the 

SLUI mitigation initiative was quantified as the proportion of the catchment area upstream of 

SoE sites that were occupied by SLUI farms (Table 6). Second, the new fencing resulting from 

the freshwater environmental grant programme was quantified as the proportion of upstream 

stream length with new fences (Table 6). Note that this variable ranges between zero and 

200% because both sides of a stream may be fenced. Third, the new planting resulting from 

the freshwater environmental grant programme was quantified as the proportion of catchment 

area subject to new planting. The proportion of the catchment area subject to erosion in 2004 

was also included as a covariate in this analysis.  
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The first step of the analysis was to use the digital river network to accumulate the area of 

SLUI farms, new fencing, new planting and the area of land designated as subject to erosion 

in 2004. The accumulation produced a value for all network segments being the proportion of 

catchment occupied by SLUI farms (Figure 8), the proportion of river length subject to new 

fences (Figure 9), the proportion of catchment area subject to new planting (Figure 10) and 

the proportion of catchment area subject to erosion in 2004 (Figure 11). It was hypothesised 

that these four variables (hereafter SLUI, Fencing, Planting and Erosion) are associated with 

trend direction and magnitude. In addition, it was hypothesised that the interaction (i.e., 

multiplicative combination) of SLUI and erosion (Erosion_SLUI) would be associated with 

trend direction and magnitude on the basis that erosion sites subject to farm plans would show 

stronger benefits to water quality than either predictor in isolation. 

Table 6. Summary of explanatory variables used in assessments of association between 

trends and management interventions.  

Explanatory 

variable 

Description Units 

SLUI Proportion of upstream catchment area occupied by farms subject to 

a farm plan prepared under the SLUI program. 

% 

Erosion Proportion of upstream catchment area subject to erosion in 2004. % 

SLUI_Erosion Interaction (i.e., multiplicative combination) of SLUI and erosion - 

Planting Proportion of upstream catchment area subject to riparian planting 

carried out under HRC freshwater environmental grant programme. 

% 

Fencing Proportion of upstream riparian river length fencing carried out under 

HRC freshwater environmental grant programme. 

% 
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Figure 8. Proportion of catchment occupied by SLUI farms.  
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Figure 9. Proportion of total catchment stream length fence.  
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Figure 10. Proportion of total catchment subject to planting works.  
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Figure 11. Proportion of catchment subject to erosion in 2004. 

 

The relationships between trend direction and the explanatory variables were tested using a 

random forest classification model. In these RF models, the categorical dependent variable 

was the trend direction and the predictors were the continuous independent variables: the 

proportion of catchment occupied by SLUI farms; the proportion of river length subject to new 

fences; the proportion of catchment area subject to new planting; and the proportion of 

catchment area subject erosion in 2004.  
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A backward elimination procedure was used to remove redundant predictor variables from the 

initial ‘saturated’ RF models (i.e., models that included all predictors). The variables retained 

in the reduced model were interpreted as having significant associations with the response 

variable. The procedure first assesses the model error (MSE) using a cross validation process 

(Svetnik et al., 2004). The predictions made to the hold out observations during cross 

validation are used to estimate the MSE and its standard error. The model’s least important 

predictor variables are then removed in order, with the MSE and its standard error being 

assessed for each for each successive model. The final, ‘reduced’ model is defined as the 

model with the fewest predictor variables whose error is within one standard error of the best 

model (i.e., the model with the lowest cross validated MSE). This is equivalent to the “one 

standard error rule” used for cross validation of classification trees (Breiman et al., 1984).  

The relationships between trend magnitude and the individual explanatory variables were 

evaluated using stepwise linear regression. A standard forward and backward stepwise model 

fitting procedure was applied to a saturated model that included all predictors and a term 

expressing the interaction between erosion and SLUI. In this procedure, the Akaike 

information criterion (Akaike, 1973) was used to apply a penalised log-likelihood method to 

evaluate the trade-off between the degrees of freedom and fit of the model as explanatory 

variables were added or removed (Crawley, 2002). As for the classification RF model, the 

retained variables were interpreted as having significant associations with the response 

variable. The performance was expressed as the proportion of variation in the response 

explained by model (r2). 

4.7.2 Improvements of point source discharges  

HRC provided data that linked discharge sites to their closest downstream impact sites. The 

discharge-impact pairs were used to examine if trend directions at both sites were concordant. 

Consistent concordance between trends at discharge and impact sites was interpreted as 

evidence of association between the two sets of trends.  

Binomial tests were used to assess the level of association between the paired discharge-

impact site trends. It was deemed that there was an association in a certain direction if the 

number of sites that had concordant trends (i.e., both increasing or both decreasing) were 

greater than could be expected if increasing and decreasing trends were equally likely. To 

perform a binomial test, the number of concordant pairs of discharge-impact site trends and 

their directions were counted. All pairs of trends were included regardless of the confidence 

in the classification of the trend direction. A ‘two-tailed’ binomial test was then performed 

based on the expectation that pairs of sites have a 50% probability of being concordant. If the 

binomial test p-value was less than 0.05, the null hypothesis was rejected, (i.e., it was 

concluded that there were more concordant trends than could be expected by chance and that 

there was an association between discharge trends and trends at downstream impact sites). 

In this case, the overall trend was positive if the proportion of concordant increasing trends 

was greater than 50% (and the binomial test was significant), or negative if 50% of concordant 

trends were decreasing (and the binomial test was significant). 

4.7.3 Climate and flows 

Trends in time series of annual rainfall depths and mean flows were evaluated at the 13 and 

15 climate and flow recording stations (Figure 7). Trend directions were quantified by RSS 

values and confidence in trend direction was expressed as the likelihood that trends were 

decreasing (Table 3). 
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Overall ‘regional trends’ in annual rainfall and mean flows were assessed using binomial tests. 

It was deemed that there was a regional trend in a certain direction if the number of sites that 

had trends in the same direction (i.e., positive or negative RSS values) were greater than 

could be expected if increasing and decreasing trends were equally likely. To perform a 

binomial test, the number of climate and flow recording station trends and their directions were 

counted. All trends were included regardless of the confidence in the classification of the trend 

direction. A ‘two-tailed’ binomial test was then performed based on expectation that the trend 

at a station has a 50% probability of being in a particular direction (e.g., decreasing). If the 

binomial test p-value was less than 0.05, the null hypothesis was rejected, i.e., it was 

concluded that there were more increasing trends than could be expected by chance and that 

there was a regional trend. When there was a regional trend, its magnitude was defined as 

the median of all RSS values. 
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5 Results 

5.1 Analysis of time-periods for SoE sites 

The results of the analysis of the number of SoE sites with adequate data versus length of 

time-period are shown in Figure 12. For the 10-year period ending 2016 there were 69 sites 

with adequate E. coli data i.e., sites that met the filtering rules. There were no sites with 10 

years of adequate Turbidity or SSC and only 23 sites with adequate Clarity data. The 10-year 

period was adopted for analysis of E. coli as this represents a reasonable number of sites for 

spatial modelling (69) and a period over which HRC’s initiatives are expected to have improved 

water quality. Relaxing the frequency of monitoring requirement to quarterly would increase 

the number of eligible sites for Clarity (Figure 12). However, relaxation of sampling frequency 

for Clarity would have introduced inconsistency in the filtering rules. Analysis that included 

spatial modelling of time-periods longer than 10 years was precluded because the number of 

sites with adequate data was too small to adequately represent regional variability (Figure 12). 

The 7-year period ending 2016 was adopted as a second time-period for the analysis. This 

shorter period was less ideal for analysis of trends but provided a larger number of sites for 

spatial modelling: 86 E. coli, 37 clarity, 76 SSC and 62 turbidity (Figure 12).  

 

 

Figure 12. Trade-off between number of SoE sites and the trend-period length. The plots for 

each variable show the number of sites that comply with the filtering rules when seasons are 

defined as months or quarters.  
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5.2 Swimming grades at SoE sites 

5.2.1 10-year time-period 

Swimming grades for the 69 SoE sites in the 10-year dataset, for both the complete dataset 

and the summer only data, are summarised in Table 7 and shown in Figure 135. 

Table 7: Summary of number of SoE sites in each swimming grade.  

Grade No. of sites (annual grade) No. of sites (summer grade) 

A 9 8 

B 10 2 

C 9 21 

D 25 16 

E 16 22 

 

  

Figure 13. Swimming grades assigned to the 69 SoE sites included in the 10-year time-

period dataset for all data (left) and the summer season (right). The “summer” grades were 

derived from E. coli samples pertaining to the summer swimming season only (1st November 

to 31st March). The grey lines represent rivers of stream order four or greater.  

                                                
5 A complete set of E. coli statistics for the 69 SoE sites included in the 10-year dataset is provided as supplementary data in 

file “SoESite_SwimGrading_10Yr.csv” 
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Sites that were graded excellent (A) and good (B) tended to be located in headwaters and 

sites that were graded intermittent (D) and poor (E) tended to be on main stem rivers (Figure 

13).  

A larger proportion of sites were swimmable (i.e., grade fair or better) for the summer 

swimming season compared to the all year grades (45% versus 40%). However, fewer sites 

were in the excellent and good grades for summer (10 sites) compared to all year (19 sites). 

There was a pattern in the spatial distribution of differences between summer and all year 

grades (Figure 14). The largest negative differences (i.e., grades being poorer in summer 

compared to all year) were concentrated in the smaller headwater streams and the largest 

positive differences (i.e., grades being better in summer compared to all year) tended to occur 

on mainstem rivers. Consistent with this pattern, there was a small but statistically significant 

positive relationship between catchment area and the difference between summer and all year 

grades (r2 = 8%, p = 0.01). 

 

Figure 14. Difference between the all year grades and the summer swimming season grades 

(1st November to 31st March) for the 10-year time-period dataset. The plotted values indicate 

the difference in grade between all year and summer. For example, an A for all year and D 

for summer is a difference of -3. The grey lines represent rivers of stream order four or 

greater. 
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5.2.2 Seven-year time-period 

A complete set of statistics describing state for E. coli, turbidity, SSC and clarity at the 88 SoE 

sites included in the 7-year dataset is provided as supplementary data6. Of the 86 SoE sites 

in the 7-year dataset with E. coli data, 24 sites were graded excellent (A), 7 were graded good 

(B), 5 were graded fair (C), 30 were graded intermittent (D) and 20 were graded poor (E) 

(Figure 15). Sites that were graded excellent (A) and good (B) tended to be located in 

headwaters and sites that were graded intermittent (D) and poor (E) tended to be on main 

stem rivers (Figure 15). 

 

Figure 15. Swimming grades assigned to the 86 SoE sites that had E. coli data in the 7-year 

time-period dataset. The grey lines represent rivers of stream order four or greater. 

 

Site swimming grades assessed for each time-period were not always the same (Table 8). Of 

the 69 sites that were in common to the 10-year and seven-year time period, 49 (i.e., 71%) 

had the same grading for both time periods (Table 8). Sites in the D and E grades had the 

most stable grades between the two time-periods and sites in the A and B grades were the 

least stable (Table 8).  

                                                
6 SoE_Sites7-Year_StateResults.csv 
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Table 8. Comparison of swimming grades at 69 sites evaluated for the 10-year and seven-

year time-periods.  The values in parentheses are the percentage of sites. 
  

  Swimming grades seven-years 

  A B C D E 

S
w
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0
-y

e
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A 9 (15) 0 (0) 0 (0) 0 (0) 0 (0) 

B 7 (10) 2 (3) 1 (1) 0 (0) 0 (0) 

C 4 (6) 3 (4) 1 (1) 1 (1) 0 (0) 

D 0 (0) 1 (1) 2 (3) 22 (32) 0 (0) 

E 0 (0) 0 (0) 0 (0) 1 (1) 15 (22) 

 

5.3 Trends at SoE sites 

5.3.1 10-year time-period 

Of the 69 SoE sites with E. coli data included in the 10-year time-period dataset, 18 had flow 

data for at least 80% of sample occasions. An examination of differences in trend directions 

and magnitudes for raw and flow adjusted data was carried out for these sites and is described 

in Appendix B. Based on this examination it was concluded that this study’s findings would not 

be significantly different if flow adjusted trends had been used. All trends reported below for 

both time-periods are therefore based on analyses performed using raw (i.e., not flow 

adjusted) data. 

A large proportion of E. coli trends (raw data) for the 69 SoE sites included in the 10-year time-

period dataset was uncertain (Table 9, Figure 16). However, there were more trends that were 

characterised as likely to be improving than degrading (Figure 17). For median E. coli, G260 

and G540, 61%, 77% and 78% of site trends were as likely as not to be improving (Figure 17). 

Trends in G260 and G540 were not analysed for some sites due to high proportions of zeros 

in the time series of annual values. There was no discernible geographic pattern in the trend 

status and improving, degrading and uncertain trends occurred throughout the region (Figure 

16).  

Table 9. Trend analysis results for E. coli at the 69 SoE sites included in the 10-year period 

dataset. Values in parentheses are proportion of sites (%).  

Variable Decreasing Increasing Uncertain Not Analysed 

E. coli 10 (14) 7 (10) 52 (75) 0 (0) 

G260  7 (10) 0 (0) 55 (80) 7 (10) 

G540  4 (6) 3 (4) 53 (77) 9 (13) 
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Figure 16. Map of sites classified by their 10-year raw trend descriptions for the three E. coli 

statistics. Note that trend descriptions indicate degrading and improving (rather than trend 

direction). Trends are all based on analyses performed using raw (i.e., not flow adjusted) 

data. 
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Figure 17. Summary plot of 10-year time-period trend analysis results.  The plot shows the level of 

confidence that water quality was improving at each site and variable. Combinations of site and 

variable for which data was not available or trends were categorised as not analysed are shown as 

missing dots. Missing dots indicate the variable was either not monitored or the water quality trend 

description was ‘not analysed’. See Table 3 for details of the confidence categories. Sites are 

grouped by the sea draining catchment to which they belong and then alphabetical order of the site 

names (separated by an underscore). 
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Trend direction (irrespective of confidence) was predominantly improving water quality, 

particularly for trends in the proportion of samples exceeding the 260 and 540 thresholds. 

However, trend magnitudes differed greatly between sites (Figure 18). 

 

Figure 18. Distribution of trend magnitudes (RSS values) for the E. coli statistics at the 69 

SoE sites included in the 10-year time-period dataset.Trends are all based on analyses 

performed using raw (i.e., not flow adjusted) data. All sites complied with the inclusion rules 

but their directions were not necessarily established with confidence.  

5.3.2 Seven-year time-period 

Of the 88 SoE sites retained in the seven-year time-period dataset, 86 had sufficient E. coli 

data for trend analysis, and 37, 76 and 62 had sufficient data for Clarity, SSC and Turbidity 

respectively. A large proportion of trends were uncertain (Table 10, Figure 19). However, there 

were more trends that were characterised as likely to be improving than degrading (Figure 

20). For E. coli median, G260 and G540, 65%, 81% and 78% of site trends were as likely as 

not to be improving (Figure 20). For Clarity, SSC and Turbidity, 73%, 95% and 90% of site 

trends were as likely as not to be improving (Figure 20). Most of the certain trends for clarity, 

SSC and turbidity were improving (Table 10). Trends in G260 and G540 were not analysed 

for some sites due to high proportions of zeros in the time series of annual values. There was 

no discernible geographic pattern in the trend status and improving, degrading and uncertain 

trends occurred throughout the region (Figure 16). 
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Table 10. Trend analysis results for the 88 SoE sites included in the seven-year period 

dataset. Values in parentheses are proportion of sites (%). Trends are all based on analyses 

performed using raw (i.e., not flow adjusted) data. 

Variable Decreasing Increasing Not Analysed Uncertain 

E. coli  6 ( 7) 7 (8) 0 (0) 73 (85) 

G260 26 (30) 1 (1) 2 (2) 59 (67) 

G540 17 (19) 1 (1) 6 (7) 64 (73) 

Clarity  2 ( 5) 3 (8) 0 (0) 32 (86) 

SSC  8 (11) 0 (0) 0 (0) 68 (89) 

Turbidity 26 (42) 0 (0) 0 (0) 36 (58) 

 

 

Figure 19. Map of SoE sites classified by their seven-year trend descriptions. Note that trend 

descriptions indicate degrading and improving (rather than trend direction). Trends are all 

based on analyses performed using raw (i.e., not flow adjusted) data. 
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Figure 20. Summary plot of seven-year time-period trend analysis results.  The plot shows 

the level of confidence that water quality was improving at each site and variable. 

Combinations of site and variable for which data was not available or trends were 

categorised as not analysed are shown as missing dots. Missing dots indicate the variable 

was either not monitored or the water quality trend description was ‘not analysed’. See Table 

3 for details of the confidence categories. Sites are grouped by the sea draining catchment 

to which they belong and then alphabetical order of the site names (separated by an 

underscore).  
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For the seven-year time-period, trend direction (irrespective of confidence) was predominantly 

improving water quality, particularly for trends in the proportion of samples exceeding the 260 

and 540 thresholds. However, trend magnitudes differed greatly between sites (Figure 21). 

 

Figure 21. Distribution of trend magnitudes (RSS values) for the water quality variables at 

the 89 SoE sites included in the seven-year time-period dataset. Trends are all based on 

analyses performed using raw (i.e., not flow adjusted) data. All sites complied with the 

inclusion rules but their directions were not necessarily established with confidence. 

5.4 Trends at discharge and impact sites 

5.4.1 Analysis of time-periods  

The results of the analysis of the number of discharge and impact sites with adequate data 

versus length of time-period are shown in Figure 22. There were no sites that met the filtering 

rules with 10 years of adequate turbidity or SSC data. There was a reduction in the rate of 

increase of sites that met the filtering rules for time periods less than seven years. For the 

seven-year period ending 2016 there was an increase in the total number of impact and 

discharge sites that met the filtering rules if quarterly rather than monthly data was used for 

trend analysis. For example, for SSC and clarity, there were 11 and 8 sites that met the filtering 

rules if monthly data were considered and this increased to 22 and 19 sites respectively if 

quarterly data were used (Figure 22).  
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The seven-year period ending 2016 and quarterly data was adopted for analysis of the 

discharge and impact sites. This represented a reasonable trade-off between number of sites 

and the duration of the time-period over which HRC’s initiatives are expected to have improved 

water quality. This time period yielded 23, 0, 22 and 0 discharge sites that met the filtering 

rules for E. coli, clarity, SSC and turbidity respectively (Figure 22). The seven-year time period 

yielded 31, 19, 30 and 4 impact sites that met the filtering rules for E. coli, clarity, SSC and 

turbidity respectively (Figure 22). 

 

Figure 22. Trade-off between number of impact and discharge sites and the trend-period 

length.  The plots for each variable show the number of sites that comply with the filtering 

rules when seasons are defined as months or quarters.  
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5.4.2 Discharge sites 

There were 23 discharge sites that complied with the filtering rules for the seven-year time-

period of which 23 and 22 had E. coli and SSC data respectively7. A large proportion of trends 

were uncertain; however, more of the certain trends for were improving than degrading (Table 

11, Figure 23). In addition, there were more trends characterised as likely to be improving than 

degrading (Figure 24. There was no discernible geographic pattern in the trend status and 

improving, degrading and uncertain trends occurred at discharge sites throughout the region 

(Figure 23). 

Table 11. Trend analysis results for E. coli, and SSC at the 23 discharge sites included in the 

seven-year period dataset. Values in parentheses are proportion of sites (%). Trends are all 

based on analyses performed using raw (i.e., not flow adjusted) data.  

Variable Degrading Improving Uncertain 

E. coli 3 (13) 6 (26) 14 (61) 

SSC 6 (26) 7 (30) 9 (39) 

 

 

Figure 23. Map of discharge sites classified by their 10-year trend descriptions. Note that 

trend descriptions indicate degrading and improving (rather than trend direction). Trends are 

all based on analyses performed using raw (i.e., not flow adjusted) data. 

                                                
7 A complete set of trend analysis results for the 23 discharge sites is provided as supplementary data in file 

“TrendsDischargeSites.csv” 
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Figure 24. Summary plot of seven-year time-period trend analysis results based on quarterly 

data for impact sites.   The plot shows the level of confidence that water quality was 

improving at each site and variable. Combinations of site and variable for which data was not 

available or trends were categorised as not analysed are shown as missing dots. Missing 

dots indicate the variable was either not monitored or the water quality trend description was 

‘not analysed’. See Table 3 for details of the confidence categories. Sites are grouped by the 

sea draining catchment to which they belong and then alphabetical order of the site names 

(separated by an underscore).   
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5.4.3 Impact sites 

There were 31 impact sites that complied with the filtering rules for the seven-year time-period 

of which E. coli, clarity, SSC and turbidity data was available for at 31, 19, 30 and 4 sites 

respectively. A large proportion of trends were uncertain but most of the certain trends were 

improving (Table 12, Figure 25). In addition, there were more trends characterised as likely to 

be improving than degrading (Figure 26). There was no discernible geographic pattern in the 

trend status and improving, degrading and uncertain trends occurred throughout the region 

(Figure 25).  

Table 12. Trend analysis results for E. coli, clarity SSC and turbidity at the impact sites 

included in the 10-year period dataset. Values in parentheses are proportion of sites (%). 

Trends are all based on analyses performed using raw (i.e., not flow adjusted) data.  

Variable Degrading Improving Uncertain 

Clarity 0 (0) 5 (26) 14 (74) 

E. coli 4 (13) 6 (19) 21 (68) 

SSC 1 (3) 2 (6) 27 (91) 

Turbidity 0 (0) 0 (0) 4 (100) 
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Figure 25. Map of impact sites classified by their 10-year trend descriptions. Note that trend 

descriptions indicate degrading and improving (rather than trend direction). Trends are all 

based on analyses performed using raw (i.e., not flow adjusted) data. 
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Figure 26. Summary plot of seven-year time-period trend analysis results for impact sites. 

The plot shows the level of confidence that water quality was improving at each site and 

variable. Combinations of site and variable for which data was not available or trends were 

categorised as not analysed are shown as missing dots. Missing dots indicate the variable 

was either not monitored or the water quality trend description was ‘not analysed’. See Table 

3 for details of the confidence categories. Sites are grouped by the sea draining catchment 

to which they belong and then alphabetical order of the site names (separated by an 

underscore).   
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5.5 Spatial models of current water quality state 

5.5.1 Swimming grades based on 10-year time-period dataset 

The performance of the regional spatial models of the E. coli statistics (median, G260 and 

PropGT540) were at or close to adequate as indicated by the following statistics NSE > 0.50, 

RSR < 0.70, and if PBIAS < ±25% (Table 13, Moriasi et al. (2007)). The performance of the 

regional spatial models was lower than the national models of the same E. coli statistics 

reported by Snelder et al. (2016a) (Table 14).  

Table 13. Performance of the spatial models of E. coli state based on the 10-year time-period 

dataset. The fitting dataset comprised 68 regional sites. Performance was determined using 

independent predictions (i.e., sites that were not used in fitting the models) generated from 

the out-of-bag observations. NSE = Nash-Sutcliffe efficiency, PBIAS = percent bias (%), RSR 

= relative root mean square error, RMSD = root mean square deviation. Units for RMSD for 

Median are log10 E. coli 100mL-1. RMSD units for G260 and G540 are logit transformed 

proportions. 

Model (E. coli statistic) NSE PBIAS RSR RMSD 

Median 0.48 -1 0.7 0.38 

PropGT260 0.51 5 0.7 0.94 

PropGT540 0.50 0.4 0.7 0.79 

 

Table 14. Performance of the national spatial models of E. coli state. The fitting dataset 

comprised the 753 national sites (see Snelder et al., 2016a). Performance was determined 

using independent predictions (i.e., sites that were not used in fitting the models) generated 

from the out-of-bag observations. NSE = Nash-Sutcliffe efficiency, PBIAS = percent bias (%), 

RSR = relative root mean square error, RMSD = root mean square deviation. Units for RMSD 

for Median are log10 E. coli 100mL-1. RMSD units for G260 and G540 are proportions (i.e., 

original scale [0 – 1]) 

Model (E. coli statistic) NSE PBIAS RSR RMSD 

Median 0.72 -0.40 0.5 0.35 

G260 0.67 -1.02 0.6 0.16 

G540 0.58 -2.07 0.6 0.13 

  

The relationships between predictors and the three E. coli statistics are indicated by partial 

dependence plots (PDP, Figure 27). The PDPs indicate associations between E. coli statistics 

and the proportion of the catchment occupied by high producing exotic grassland and scrub 

land (usPastoral and usScrub), catchment elevation and slope (usCatElev, usAveSlope), 

climatic variables (usAveTCold, usAveTWarn) and segment elevation (segAveElev) (Figure 

27). These relationships were consistent between E. coli statistics and with expectations. For 

example, the values of all E. coli statistics increased with increasing pastoral land cover and 

decreased with increasing catchment elevation and slope (Figure 27). The association of the 

E. coli statistics with pastoral land cover and elevation is consistent with the dominant source 

of faecal contamination being grazing animals and is consistent with recent evaluations of 

environmental patterns in river water quality (e.g., Larned et al. (2016b); Unwin et al. (2010)). 
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Figure 27. PDPs for the eight most important predictor variables in RF models of the three 

Escherichia coli statistics based on the 10-year time-period dataset.  Each panel corresponds 

to one predictor. The Y-axis is the standardised value of the marginal response for each the 

three statistics. In each case, the original marginal responses over all eight predictors were 

standardised to have a range between zero and one. Plot amplitude (the range of the marginal 

response on the Y-axis) is directly related to a predictor variable’s importance; amplitude is 

large for predictors with high importance. Legend in top left panel applies to all panels. 

Predictor variables are defined in Table 4. 

Predictions of state and swimming grades assessments based on the regional 10-year E. coli 

models are shown in Figure 28. Assessment of regional river swimming grades, calculated 

from predictions made by the regional 10-year models and the national models of Snelder et 

al. (2016a), are shown in Table 15. The proportion of river segments in each swimming grade 

estimated using the national model and the regional model were in reasonable agreement. 

The national model estimated that 45% of river length of stream order four or greater was 

swimmable (grade fair or better) whereas the regional model estimate was 38%. When all 

segments were considered, the national model predicted 36% swimmable and the regional 

model predicted 37%. 
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Figure 28. Spatial model predictions made using RF models and transformed response variables for the 69 SoE sites represented in the 10-

year dataset. A log10 transformation was applied to the median and logit transformations was applied to G260 and G540 prior to fitting the 

models. The right-hand map represents the predicted swimming grade derived from analysis of the predicted values of the three statistics to 

the left. SoE sites are shown as dots with the colour representing the observed grade for the site (i.e., not the grade predicted by the model). 



 

 Page 64 of 130 

Table 15. Swimming grades determined using the regional models based on the 10-year 

dataset and the national models. Tabulated values are proportions of the river network by 

length (%) in each swimming grade.  
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National models (Order 4+) 12 12 21 46 40 16 56 

Regional model (Order 4+) 12 8 18 38 35 26 61 

National models (All segments) 20 10 6 36 20 44 64 

Regional model (All segments) 12 10 15 37 22 41 63 

 

5.5.2 Swimming grades based on summer data  

The performance of the regional spatial models of the summer E. coli statistics (median, G260 

and G540) were at or close to adequate as indicated by the following statistics NSE > 0.50, 

RSR < 0.70, and if PBIAS < ±25% (Table 16, Moriasi et al., 2007) and were very similar to the 

performance of the models based on statistics derived from the complete dataset (Table 13). 

The modelled relationships represented by the summer models were very similar to the 

models derived from the complete dataset (data not shown).  

Table 16. Performance of the spatial models of E. coli state based on the summer season 

statistics for 10-year time-period dataset. The fitting dataset comprised 69 regional sites. 

Performance was determined using independent predictions (i.e., sites that were not used in 

fitting the models) generated from the out-of-bag observations. NSE = Nash-Sutcliffe 

efficiency, PBIAS = percent bias (%), RSR = relative root mean square error, RMSD = root 

mean square deviation. Units for RMSD for Median are log10 E. coli 100mL-1. RMSD units for 

G260 and G540 are logit transformed proportions. 

Variable (model) NSE PBIAS RSR RMSD 

E. coli 0.48 -1 0.7 0.38 

G260 0.47 5 0.7 0.99 

G540 0.51 0.5 0.7 0.78 

 

Predictions of state and swimming grades assessments based on the summer data for the 

10-year period are shown in Figure 29. The summer model estimated that 36% of river length 

of stream order four or greater was swimmable (grade fair or better, Table 19), which was 

consistent with the all-year model estimate (38%, Table 15). By contrast, when all segments 

were considered, the summer model predicted 17% (Table 17swimmable and the all year 

model predicted 37% (Table 15). The difference is consistent with the observation that SoE 

sites representing smaller headwater streams tended to have poorer grades in summer 

compared to grades derived from the complete dataset, whereas sites on mainstem rivers 

tended to have better grades in summer compared grades derived from the complete dataset 

(Figure 14). Because smaller rivers make up the largest contribution to total river length in the 
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region, the proportion of swimmable rivers is much lower when all rivers are considered 

compared to just forth order or larger.  

Table 17. Swimming grades determined using the summer models based on the 10-year 

dataset and the national models. Tabulated values are proportions of the river network by 

length (%) in each swimming grade.  
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Summer models (Order 4+) 8 7 21 36 28 35 63 

Summer models (All segments) 2 9 6 17 17 66 83 
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Figure 29. Spatial model predictions made using RF models and transformed response variables for the 69 SoE sites represented in the 

summer 10-year dataset. A log10 transformation was applied to the median and logit transformations was applied to G260 and G540 prior to 

fitting the models. The right-hand map represents the predicted swimming grade derived from analysis of the predicted values of the three 

statistics to the left. SoE sites are shown as dots with the colour representing the observed grade for the site (i.e., not the grade predicted by 

the model). 
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5.5.3 Swimming grades based on seven-year time-period dataset 

The performance of the regional spatial models of the E. coli statistics (median, G260 and 

PropGT540) based on the seven-year time-period dataset was at or close to adequate as 

indicated by the following statistics NSE > 0.50, RSR < 0.70, and if PBIAS < ±25% (Table 18, 

Moriasi et al. (2007). The performance of the regional spatial models was lower than the 

national models of the same E. coli statistics (Table 14).  

Table 18. Performance of the E. coli spatial models based on the seven-year time-period 

dataset. The fitting dataset comprised 86 sites. Performance was determined using 

independent predictions (i.e., sites that were not used in fitting the models) generated from 

the out-of-bag observations. NSE = Nash-Sutcliffe efficiency, PBIAS = percent bias (%), RSR 

= relative root mean square error, RMSD = root mean square deviation. Units for RMSD for 

Median are log10 E. coli / 100mL. RMSD units for G260 and G540 are logit transformed 

proportions. 

Model (E. coli statistic) NSE PBIAS RSR RMSD 

Median 0.49 -1.0 72 0.35 

G260 0.47 0.5 74 0.65 

G540 0.46 0.3 75 0.57 

 

The relationships between predictors with high importance in the RF models and the three E. 

coli statistics are indicated by PDPs (Figure 30). The PDPs indicate associations between the 

E. coli statistics and the proportion of the catchment occupied by high producing exotic 

grassland and scrub land (usPastoral and usScrub), catchment elevation and slope 

(usCatElev, usAveSlope), climatic variables (usAveTCold, usAveTWarn) and segment 

elevation (segAveElev) (Figure 30). As for the state models derived using the 10-year time-

period data, these relationships were consistent between E. coli statistics and with 

expectations. 
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Figure 30. PDPs for the eight most important predictor variables in Random Forest models of 

the three Escherichia coli statistics for the seven-year time-period.  Each panel corresponds 

to one predictor. The Y-axis is the standardised value of the marginal response for each the 

three statistics. In each case, the original marginal responses over all eight predictors were 

standardised to have a range between zero and one. Plot amplitude (the range of the marginal 

response on the Y-axis) is directly related to a predictor variable’s importance; amplitude is 

large for predictors with high importance. Legend in top left panel applies to all panels. 

Predictor variables are defined in Table 4. 

Predictions of state and swimming grades assessments using the regional seven-year models 

are shown in Figure 31. Assessment of regional river swimming grades, calculated from these 

predictions are shown in Table 18. The proportion of river segments in each swimming grade 

estimated using the seven-year models did not strongly agree with those of the 10-year 
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dataset or the national models. The seven-year model estimated lower proportions of river 

length in excellent and fair grades than the 10-year and national models and higher 

proportions in the good grade (Table 15, Table 19). The seven-year models resulted in very 

few network segments being allocated the fair grade. However, the proportion of order 4 or 

higher segments of grade fair or better (i.e., swimmable) estimated using the seven-year 

models were in close agreement with the 10-year models (41%, 38% respectively) and were 

in reasonable agreement with the national models (45%). When all segments were 

considered, the proportion of segments of grade fair or better (i.e., swimmable) estimated 

using the seven-year, 10-year and national models closely agreed, reporting results of 38%, 

37% and 36% respectively (Table 15, Table 19).  

Table 19. Swimming grades determined using models of the E. coli statistics based on the 

seven-year time-period dataset. Tabulated values are proportions of the river network by 

length (%) in each swimming grade.  
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Regional model (Order 4+) 6 31 4 41 36 24 59 

Regional models (All segments) 2 24 12 38 25 37 62 
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Figure 31. Spatial model predictions made using RF models and transformed response variables for the 86 SoE sites represented in the 

seven-year dataset.  A log10 transformation was applied to the median and logit transformations were applied to G260 and G540 prior to 

fitting the models. The right-hand map represents the predicted swimming grade derived from analysis of the predicted values of the three 

statistics to the left. SoE sites are shown as dots with the colour representing the observed grade for the site (i.e., not the grade predicted by 

the model). 
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5.5.4 State for clarity, SSC and turbidity based on seven-year time-period dataset 

The performance of the regional spatial models of the median site values of clarity, SSC and 

turbidity were satisfactory as indicated by the following statistics NSE > 0.50, RSR < 70, and 

if PBIAS < ±25% (Table 20, Moriasi et al., 2007).  

Table 20. Performance of the spatial models of clarity, SSC and turbidity based on the 

seven-year time-period dataset. The fitting dataset comprised varying numbers of sites by 

variable. Performance was determined using independent predictions (i.e., sites that were 

not used in fitting the models) generated from the out-of-bag observations. NSE = Nash-

Sutcliffe efficiency, PBIAS = percent bias (%), RSR = relative root mean square error, RMSD 

= root mean square deviation. Units for RMSD are log10of the original units for each variable 

(see Table 2). 

Variable (model) 
Number 
of sites 

NSE PBIAS RSR RMSD 

Clarity 37 0.61 3.28 62.7 0.18 

SSC 75 0.57 0.29 65.3 0.33 

Turbidity 61 0.66 -1.63 58.4 0.28 

 

The predictor variables with high importance in the RF models of clarity, SSC and turbidity 

state reflected associations of all three variables with catchment area and river mean flow 

(usArea and usFlow; Figure 32). Turbidity and SSC increased with area and mean flow and 

clarity decreased (Figure 32). Turbidity and SSC increased, and clarity decreased, with 

increasing values of usPhos (Figure 32). This relationship is expected because the predictor 

usPhos is high in catchments dominated by soft sedimentary geology, which tend to be more 

erosion-prone than catchments dominated by harder geological material. Turbidity and SSC 

increased, and clarity decreased, with increasing values of usPastoral and usExoticForest 

(Figure 32). There were complex relationships between clarity, SSC and turbidity and 

catchment slope, probably because of interactions with geology, which tends to be more 

erosion prone in soft sedimentary hill country and less so in steeper headwater catchments. 

The association of clarity, SSC and turbidity with the predictors are consistent with recent 

evaluations of environmental patterns in river water quality (e.g., Larned et al., 2016b; Unwin 

et al., 2010). 
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Figure 32. PDPs for the eight most important predictor variables in Random Forest models of 

clarity, SSC and turbidity based on the 7-year time-period dataset.  Each panel corresponds 

to one predictor. The Y-axis is the standardised value of the marginal response for each the 

three variables. In each case, the original marginal responses over all eight predictors were 

standardised to have a range between zero and one. Plot amplitude (the range of the marginal 

response on the Y-axis) is directly related to a predictor variable’s importance; amplitude is 

large for predictors with high importance. Legend in top left panel applies to all panels. 

Predictor variables are defined in Table 4. 

 

Predictions of state for clarity, SSC and turbidity based on the seven-year period are shown 

in Figure 29. Mainstem rivers had lower clarity and higher turbidity and SSC that smaller rivers. 

Clarity was lower and turbidity and SSC was higher in rivers whose catchments were 

dominated by pasture and the soft sedimentary hill county areas that occupy the central 

catchment areas of the large river of the region (Figure 33). The current state predictions has 

not been compared to targets because HRC do not have targets for SSC and turbidity and the 

clarity target applies only to flows below the median. 
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Figure 33. Spatial model predictions of clarity, SSC and turbidity made using RF models and transformed response variables for the SoE sites 

represented in the seven-year dataset. The fitting dataset comprised varying numbers of sites by variable (see Table 20). The colour scale on 

these maps is chosen to optimally discriminate the range in values and does not indicate the acceptability of the current state. Site grades are 

not shown on the map because the NOF does not define attributes for any water quality measures that are related to sediment.
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5.6 Spatial model of changes in water quality 

5.6.1 Changes in swimming grades for the 10-year time-period 

Input data for step one of the assessment of changes in river swimming grades for the 10-

year period are the analysis of trend direction and magnitude shown in Table 21. The mix of 

sites with increasing and decreasing trends was reasonably balanced for the median statistic 

but the G260 and G540 were dominated by decreasing trends. 

Table 21. Sites with increasing and decreasing trends by E. coli statistic for the 10-year time-

period. Trends at all sites were included in this analysis irrespective of confidence in trend 

direction. 

E. coli 

statistic 

No sites 

decreasing 

No sites 

increasing 

Median of 

decreasing trends 

Median of 

increasing trends 

Median  39 27 -3.1 2.5 

G260 46 13 -3.2 4.4 

G540 47 10 -2.8 2.9 

 

The random forest models of trend direction for the 10-year time-period had predictive 

misclassification rates of 36%, 25% and 17% for E. coli, G260 and G540 respectively. The 

AUC statistics for the models were 0.66, 0.72 and 0.61 for E. coli, G260 and G540 respectively. 

These AUC statistics indicate satisfactory performance for the three classification models. Low 

misclassification rates for G260 and G540 partly reflect the low occurrence of increasing 

trends (Table 21).  

The relationships between trend direction and the model predictors were consistent across 

the three E. coli statistics (Figure 34). Predictions of trend direction for the region also showed 

a reasonable level of consistency across the three E. coli statistics (Figure 35). The model 

PDPs (Figure 34) and the regional predictions (Figure 35) indicate that: 

1. The most important predictor is usPhos, which indicates that there is an association 

with trend direction and geology. The probability that the trend at a site was decreasing 

increases with increasing values of usPhos. Sites with catchments that are either 

volcanic or soft sedimentary geology tend to have high values of usPhos.  

2. The partial plot indicates that the probability of a site having a decreasing trend 

increases as rainfall variability (usAnnRainVar) increases. This variable may not be 

causative but is correlated, having low values in the central part of the region which 

has a predominance of sites with increasing trends (Figure 35).  

3. The probability of a site having a decreasing trend is maximum for river sites with 

intermediate sized (i.e., usArea ~500 km2) catchments.  

4. The probability of a site having a decreasing trend is maximum for river sites with 

intermediate values of usHard and generally increases with increasing values of 

usParticleSize. This indicates that there is an association with trend direction and 

catchment geology. 

5. The probability of a site having a decreasing trend decreases with increasing 

indigenous forest cover (usIndigForest) and increasing scrub (usScrub).  
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6. The relationships with usAveSlope and usCatElev indicate that the probability of a site 

having a decreasing trend is maximum at intermediate slopes and elevations.  

7. The probability of a site having a decreasing trend is maximum for river sites with 

catchments having intermediate values of high intensity rainfall (i.e., usRainDays10~3- 

3.5 month-1).  

  

Figure 34. PDPs for the eight most important predictor variables in Random Forest models 

of the trend direction for the three E. coli statistic for the 10-year dataset. Each panel 

corresponds to one predictor. The Y-axis is the standardised value of the marginal change in 

probability the trend is decreasing for each of the eight modelled variables. Note that a 

decreasing trend in the variables shown indicates water quality improvement. In each case, 

the original marginal responses over all eight predictors were standardised to have a range 

between zero and one. Plot amplitude (the range of the marginal response on the Y-axis) is 

directly related to a predictor variable’s importance; amplitude is large for predictor variables 

with high importance. Legend in top left panel applies to all panels. Predictor variables are 

defined in Table 4. 
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Figure 35. Spatial model predictions made using RF models of trend direction for the 69 SoE sites represented in the 10-year dataset. The 

plotted colours values represent differences in the probability that trend is decreasing. The red and green points represent the observed trend 

direction at the 69 SoE monitoring sites (degrading and improving respectively).  
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Predicted swimming grades at the beginning and end of the 10-year period were produced by 

combining predictions of trend direction (Figure 35) with the predictions of state (Figure 28) 

and the median magnitudes over sites grouped by decreasing and increasing trends (Table 

21). Maps of swimming grades at the beginning and end of the 10-year period are shown for 

network segments of order four and greater on Figure 36. The changes in swimming grade 

over all segments are shown on Figure 37. The predictions shown on Figure 36 and Figure 

37 are consistent with the information provided by the partial plots (Figure 34) indicating, for 

example, that there was improvement trends in many moderate size (main stem) rivers.  

The predicted swimming grades at the beginning and end of the 10-year period were used to 

calculate the increase in river length in the five swimming grades (Table 22). The estimated 

percentage of all segments with grade of fair or better (grades A-C; Table 1) at start was 35% 

and at end was 40% (increase of 5%, Table 22). Estimated percentage of segments order 4+ 

with grade of fair or better (grades A-C; Table 1) at start was 34% and at end was 42% 

(estimated increase of 8%, Table 22). 

Table 22. Predicted proportion of the river network by length in swimming grades at the start 

and end of the 10-year trend period and changes over the period for all segments and 

segments of order four and above. 
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All segments start 10 10 15 35 19 46 65 

All segments end 14 12 14 40 23 37 60 

Segments order 4+ start 11 6 17 34 32 35 67 

Segments order 4+ end 13 12 17 42 37 20 57 

 



 

 Page 78 of 130 

 

Figure 36. Estimated swimming grades at the beginning (left map) and end (right map) of the 

10-year time-period based on spatial modelling for segments of Order 4+.  
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Figure 37. Predicted change in swimming grade for the 10-year time-period. A change in 

grade of -1 indicates an improvement of one swimming grade, e.g., a change from grade C 

at the start of the period to grade B at the end. 

 

5.6.2 Changes in swimming grades seven-year time-period 

Input data for step one of the assessment of changes in river swimming grades for the 

seven-year period are the analysis of trend direction and magnitude shown in Table 23. The 

mix of increasing and decreasing sites was reasonably balanced for the E. coli median but 

the G260 and G540 were dominated by decreasing trends.  
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Table 23. Sites with increasing and decreasing trends by statistic for the seven-year time-

period. Trends at all sites were included in this analysis irrespective of confidence in trend 

direction. 

Variable 
No sites 

decreasing 

No sites 

increasing 

Median of 

decreasing trends 

Median of increasing 

trends 

Median  56 30 -3.7 5.5 

G260 68 14 -10.2 4.4 

G540 61 17 -11.6 7.1 

 

The AUC statistics for the random forest models of trend direction for the seven-year E. coli 

statistics indicated poor performance (0.5 < AUC < 0.6) (Table 24). The misclassification 

rates for the E. coli statistics were higher than the misclassification rates associated with the 

10-year dataset. Misclassification rates were low (< 30%) for G260 and G540 despite the 

poor model performance due to the low occurrence of increasing trends (Table 23). 

Table 24. Misclassification rates of the RF models predicting trend directions for the E. coli 

statistics included in the seven-year dataset.  

Variable Misclassification rate (%) AUC 

Median 41 0.59 

G260 28 0.57 

G540 29 0.54 

 

The relationship between trend direction and the model predictors are show in the partial plots 

in Figure 38. The model PDPs (Figure 38) and the regional predictions (Figure 39) indicate 

that: 

1. The was a high level of consistency in the relationships between the response (the 

probability of trend decreasing) and the predictors for all three E. coli statistics. Note 

that the relationships are generally reversed for clarity for which a decreasing trend 

indicates degradation.  

2. The probability of a site having a decreasing trend increased with catchment area 

(usArea) and reached a plateau or decreased for catchments greater than ~500 km2. 

There was a similar relationship with river mean flow (data not shown).  

3. The probability of a site having a decreasing trend decreases with increasing 

indigenous forest cover (usIndigForest). There was a similar relationship with scrub 

data not shown.  

4. The probability of a site having a decreasing trend decreased as rainfall intensity 

increases (usRainDays20). 

5. The probability of a site having a decreasing trend increased with increasing catchment 

geological phosphorus (usPhos). This indicates that there is an association with trends 

and geology. Catchments with soft sedimentary geology tend to have high values of 

usPhos.  
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6. The relationships with catchment slope (usAveSlope), catchment elevation 

(usAveElev) and catchment average temperature (usAvTCold) indicates that the 

probability of a site having decreasing trends was maximum at intermediate slopes, 

elevations and temperature.  

  

 

Figure 38. PDPs for the eight most important predictor variables in Random Forest models of 

the trend direction for the E. coli statistics included in the seven-year dataset. Each panel 

corresponds to one predictor. The Y-axis is the standardised value of the marginal change in 

probability the trend is decreasing for each of the eight modelled variables. Note that a 

decreasing trend in the variables shown indicates water quality improvement. In each case, 

the original marginal responses over all eight predictors were standardised to have a range 

between zero and one. Plot amplitude (the range of the marginal response on the Y-axis) is 

directly related to a predictor variable’s importance; amplitude is large for predictor variables 

with high importance. Legend in top left panel applies to all panels. Predictor variables are 

defined in Table 3. 
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Figure 39. Spatial model predictions made using RF models of trend direction for the 85 SoE sites represented in the seven-year dataset. 

The plotted colours values represent the probability that trend is decreasing. SoE sites are shown as dots with the colour representing the 

trend directions (irrespective of confidence (red and green indicate increasing and decreasing trends respectively).
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Predictions of trend direction (Figure 39) were combined with the predictions of state (Figure 

31) and the median magnitudes of decreasing and increasing trends (Table 23) to produce 

predicted swimming grades at the beginning and end of the seven-year period. Maps of 

swimming grades at the beginning and end of the seven-year period for network segments of 

order four and greater are shown on Figure 40 and the change in swimming grade over all 

segments is shown in Figure 41. The predictions shown in Figure 40 and Figure 41 are 

consistent with the information provided by the partial plots (Figure 38) indicating, for example, 

that there were improving trends in many moderate size (main stem) rivers. 

The predicted swimming grades at the beginning and end of the seven-year period were used 

to calculate the increase in river length in the five swimming grades (Table 25, Figure 40). The 

estimated segments of all orders with grades of fair or better (grades A - C) at the start was 

35% and at the end was 40% (increase of 5%, Table 22). Estimated segments of order 4+ 

with grades of fair or better (grades A - C) at the start was 36% and at the end was 43% 

(estimated increase of 7%, Table 22). 

Table 25. Predicted proportion of the river network by length in swimming grades at the start 

and end of the seven-year trend period for all segments and segments of order four and 

above.  
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All segments start 3 17 15 35 24 41 65 

All segments end 12 20 8 40 27 33 60 

Segments order 4+ start 8 15 13 36 36 28 64 

Segments order 4+ end 19 23 1 43 39 17 56 
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Figure 40. 

Estimated swimming grades at the beginning (left map) and end (right map) of the seven-

year time-period based on spatial modelling for segments of Order 4+.  

 

Figure 41. Predicted change in swimming grade for the seven-year time-period.  A change in 

grade of -1 indicates an improvement of one swimming grade, e.g., a change from grade C 

at the start of the period to grade B at the end. 
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5.6.3 .Changes in clarity, SSC and turbidity for the seven-year time-period 

Input data for step one of the assessment of changes in river swimming grades for the 

seven-year period are shown in Table 26. The mix of increasing and decreasing sites was 

reasonably balanced for clarity but SSC and turbidity were dominated by decreasing trends.  

Table 26. Sites with increasing and decreasing trends by variable for the seven-year time-

period. Trends at all sites were included in this analysis irrespective of confidence in trend 

direction. 

Variable No sites 

decreasing 

No sites 

increasing 

Median of 

decreasing trends 

Median of increasing 

trends 

Turbidity 55 6 -6.5 2.3 

SSC 71 4 -6.2 1.6 

Clarity 15 22 -2.5 4.5 

 

The AUC statistics for the random forest models of trend direction for the seven-year dataset 

indicated good performance (0.6 < AUC < 0.7) for clarity and turbidity and satisfactory 

performance (AUC < 0.6) for SSC (Table 27). Misclassification rates were low (< 30%) for 

SSC and turbidity despite the only satisfactory model performance due to the low occurrence 

of increasing trends (Table 27). 

Table 27. Misclassification rates of the RF models predicting trend directions for the six 

variables included in the seven-year dataset.  

Variable Misclassification rate (%) AUC 

Clarity 34 0.68 

SSC 11 0.58 

Turbidity 11 0.62 

 

The relationships between the direction of trends in clarity, SSC and turbidity and the model 

predictors are demonstrated by the PDPs (Figure 42). The partial plots (Figure 42) and the 

regional predictions (Figure 43) indicate that: 

1. The relationships between the response (the probability of trend decreasing) and the 

predictors were inconsistent across the three variables, indicating differences in the 

drivers of trends for the different water quality variables. Note that the relationships are 

generally reversed for clarity for which a decreasing trend indicates degradation.  

2. The probability of a site having a decreasing trend increased for SSC and turbidity and 

decreased for clarity, with catchment area (usArea) and reached a plateau or 

decreased for catchments greater than ~500 km2. There was a similar relationship with 

river mean flow (data not shown).  

3. The probability of a site having a decreasing trend for clarity decreased with increasing 

indigenous forest cover (usIndigForest). Trends in SSC did not have a strong 

relationship with usIndigForest and trends in turbidity decreased at high values. There 

were similar relationships with scrub (data not shown).  
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4. The probability of a site having a decreasing trend in SSC and clarity increased and 

then reached a plateau as rainfall intensity increased (usRainDays20). Trends in 

turbidity did not have a strong relationship with usRainDays20. 

5. The probability of a site having a decreasing trend for SSC and turbidity increased and 

reached a plateau (SSC) or decreased (turbidity) with increasing catchment geological 

phosphorus (usPhos). This indicates that there is an association with trends and 

geology. Catchments with soft sedimentary geology tend to have high values of 

usPhos. The complex relationship between the variables and usPhos shown in Figure 

42 probably reflects interactions between geology and catchment elevation. Trends in 

clarity did not have a strong relationship with usPhos.  

6. The probability of a site having improving trends for all three variables was maximum 

at intermediate catchment slopes (usAveSlope), catchment elevations (usCatElev) 

and catchment temperature (usAvTCold). However, trends in clarity were less 

responsive to variation in all three predictors than trends in SSC and turbidity.  
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Figure 42. PDPs for the eight most important predictor variables in RF models of the trend 

direction for clarity, SSC and turbidity included in the seven-year dataset. Each panel 

corresponds to one predictor. The Y-axis is the standardised value of the marginal change in 

probability the trend is decreasing for each of the eight modelled variables. Note that a 

decreasing trend for SSC and turbidity indicates water quality improvement but for clarity 

indicates degradation. In each case, the original marginal responses over all eight predictors 

were standardised to have a range between zero and one. Plot amplitude (the range of the 

marginal response on the Y-axis) is directly related to a predictor variable’s importance; 

amplitude is large for predictor variables with high importance. Legend in top left panel 

applies to all panels. Predictor variables are defined in Table 3. 
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Figure 43. Spatial model predictions made using RF models of trend direction based on the SoE sites represented by visual clarity, SSC and 

turbidity in the seven-year dataset. The plotted colours represent the probability that the trend is decreasing. Note that for visual clarity a 

decreasing trend indicates degradation. SoE sites are shown as dots with the colour representing the trend directions, irrespective of 

confidence (red and green indicate increasing and decreasing trends respectively).
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Predictions of trend direction (Figure 43) were combined with the predictions of state (Figure 

33) and the median magnitudes of the grouped decreasing and increasing trends (Table 26) 

to produce predicted changes over the seven-year period. The predictions shown on Figure 

44 are consistent with the information provided by the partial plots (Figure 42) indicating, for 

example, that there was improving trends in many main stem rivers. 

The changes in state are quantified in Table 28 and shown in Figure 44. Taken over all 

segments, clarity decreased, for example, 25% of segments had predicted clarity of <1.7m or 

more at the start of the seven-year period, which decreased to <1.5m at the end. However, 

for larger rivers (order 4 or greater) clarity increased over the period. For example, 25% of 

segments of order 4 or greater were predicted to have a clarity of <1.2m at the start of the 

seven-year period, which increased to 1.3m at the end. Taken over all segments, and 

segments larger rivers (order 4 or greater), SSC and turbidity improved. For example, 25% of 

segments had predicted SSC of <2.6 at the start of the period, which decreased to <1.7 at the 

end.    

Table 28. Predicted state for clarity (m), SSC (g m-3) and turbidity (NTU) for the start and end 

of the seven-year trend period. The values are the estimated medians that are exceeded by 

75%, 50% and 25% of network segments (i.e., 1st, 2nd and 3rd quantiles). 

 
1st quantile 2nd quantile 3rd quantile 

Start End Start End Start End 

Clarity All segments  1.7 1.5 2.1 1.9 2.6 2.3 

Clarity Segments order 4+  1.2 1.3 1.7 1.6 2.1 2.2 

SSC All segments  2.6 1.7 3.6 2.3 5.6 3.6 

SSC Segments order 4+  3.1 2.0 5.5 3.5 10.1 6.5 

Turbidity All segments  1.9 1.2 3.1 2.0 4.5 2.8 

Turbidity Segments order 4+  2.4 1.5 4.3 2.7 6.8 4.3 
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Figure 44. Predicted change in state for clarity, SSC and turbidity for the seven-year time-period.  The values are changes in the values in 

the original units (Table 2) through the time-period. A negative improvement indicates degradation. 
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5.7 Association between trends and interventions 

5.7.1 10-year E. coli trends 

The directions of the ten-year trends in E. coli variables were weakly associated with the 

predictor variables that represented the interventions and the proportion of the catchment 

occupied by erosion in 2004 (Figure 45). Decreasing trends for all variables were generally 

associated with high values of the predictors SLUI and Erosion. Increasing trends for all 

variables were associated with high values of the predictors Planting and Fencing. The 

predictors were generally weakly correlated with each other (absolute value of Pearson’s 

correlations coefficient < 0.35) except for erosion and SLUI, which had a Pearson’s 

correlations coefficient of 0.65. 

 

Figure 45. Distribution of the predictor variables representing the interventions and the 

proportion of the catchment occupied by erosion in 2004 grouped by 10-year time-period 

trend direction.  See Table 6 for explanation of the predictor variables. 
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The misclassification rates and AUC statistics for the reduced RF classification models 

indicated a statistically significant association between the trend direction and some of the 

predictors but with poor to satisfactory model performance (Table 29). This is consistent with 

the weak relationships between trend direction and the individual predictors shown in Figure 

45. Lower misclassification rates for G260 and G540 than for E. coli partly reflect the low 

occurrence of increasing trends (Table 29). The proportion of catchments occupied by SLUI 

farms was included in the E. coli model (Table 29). Planting was included in the G260 and 

G540 models and fencing was included in all models (Table 29). 

Table 29. Misclassification rates and AUC statistics for the reduced RF classification models 

predicting direction of 10-year trends. The models expressed trend direction as a function of 

the predictor variables representing the interventions and the proportion of the catchment 

occupied by erosion in 2004. 

Variable Number 

of sites 

Misclassification 

rate (%) 

AUC Explanatory variables retained 

E. coli 69 51 0.54 Fencing + SLUI 

G260  62 26 0.58 Planting + Fencing 

G540  60 22 0.61 Planting + Fencing 

 

There was a weak association between the magnitude of 10-year trends at SoE sites and the 

predictor variables (Figure 46). Trend magnitudes decreased with increasing values of SLUI, 

Erosion and the interaction of Erosion and SLUI. Trend magnitudes increased with increasing 

values of Fencing and Planting.  
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Figure 46. Relationship between 10-year trend magnitudes and predictor variables. The 

predictor variables represent the interventions and the proportion of the catchment occupied 

by erosion in 2004. The blue line represents a linear regression. See Table 6 for explanation 

of the predictor variables. 

The stepwise linear regression models indicated that the 10-year trend magnitudes for the 

three E. coli statistics were weakly but significantly predicted by combinations of the 
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predictors (Table 32). Only Erosion and Fencing were included in the E. coli and G260 

models, respectively, but the G540 model included four predictors.  

Table 30. Details of stepwise linear regression models fitted to the magnitudes of trend for 

each of water quality variables included in the 10-year time-period. Because the models were 

built by a stepwise process, the retained explanatory variables can be interpreted as 

significant.

Variable Number of sites r2 (%) Explanatory variables retained 

E. coli 69 4 Erosion 

G260 62 6 Fencing 

G540 60 17 Erosion + SLUI + Planting + Fencing 

 

5.7.2 Seven-year trends 

The directions of the seven-year trends were weakly associated with the predictor variables 

(Figure 47). Decreasing trends for E. coli, G260, G540 and turbidity, were generally associated 

with high values of SLUI and Erosion. Increasing trends for clarity were associated with high 

values of SLUI and Erosion. Planting had weak associations with trend direction for all 

variables but decreasing trends for G260, SSC and turbidity were associated with high values 

of fencing (Figure 47).  

The predictors were generally weakly correlated with each other (absolute value of Pearson’s 

correlations coefficient < 0.4) except for Erosion and SLUI, which had a Pearson’s correlation 

coefficient of 0.62. 
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Figure 47. Distribution of the predictor variables representing the interventions and the proportion of the catchment occupied by erosion in 

2004 grouped by seven-year time-period trend direction.  See Table 6 for explanation of the predictor variables. 
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The misclassification rates and AUC statistics for the reduced RF classification models 

indicated statistically significant associations between the trend direction and predictors for all 

models. Model performance varied by variable with the G260 model achieving good 

performance, E. coli, G540 and SSC achieving satisfactory performance and clarity and 

turbidity being poor (Table 31). Low misclassification rates for SSC, turbidity, G260 and G540 

partly reflect the low occurrence of increasing trends (Table 31). The proportion of catchments 

occupied by SLUI farms was included in the E. coli, G260, clarity and SSC models (Table 31). 

Planting was included in the G540 model and turbidity models, fencing was included in the 

G260 and turbidity model and erosion was included in E. coli, G540 clarity and SSC models 

(Table 31). 

Table 31. Misclassification rates and AUC statistics for the reduced RF classification models 

predicting direction of seven-year trends. The models expressed trend direction as a function 

of the predictor variables representing the interventions and the proportion of the catchment 

occupied by erosion in 2004. 

Variable Number 

of sites 

Misclassification 

rate (%) 

AUC Explanatory variables retained 

E. coli 86 28 0.65 Erosion + SLUI 

G260  85 26 0.70 Fencing + SLUI 

G540  81 27 0.61 Planting + Erosion 

Clarity 37 46 0.57 Erosion + SLUI 

SSC 75 8 0.68 Erosion + SLUI 

Turbidity 61 13 0.53 Fencing + Planting 

 

There was a weak association between the magnitude of seven-year trends at SoE sites and 

the predictor variables (Figure 48). Trend magnitudes decreased with increasing values of 

SLUI, Erosion and the interaction of Erosion and SLUI. Trend magnitudes increased with 

increasing values of Fencing and Planting. 
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Figure 48. Relationship between seven-year trend magnitudes and predictor variables. The predictor variables represent the interventions and 

the proportion of the catchment occupied by erosion in 2004. The blue line represents a linear regression.  See Table 6 for explanation of the 

predictor variables. 
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The stepwise linear regression models indicated that seven-year trend magnitudes for all 

water quality variables, except clarity, were weakly but significantly predicted by combinations 

of the predictors representing interventions and the proportion of catchment subject to erosion 

in 2004 (Table 32). The proportion of catchments occupied by SLUI farms was included in all 

models except clarity (Table 32). Planting was included in the G260 model and Fencing and 

the interaction of Erosion and SLUI were included the SSC and turbidity models.  

Table 32. Details of stepwise linear regression models fitted to the magnitudes of trend for 

each of water quality variables included in the seven-year time-period. Because the models 

were built by a stepwise process, the retained explanatory variables can be interpreted as 

significant. The term Erosion x SLUI indicates the interaction of the erosion and SLUI farm 

variables. 

Variable Number of sites r2 (%) Explanatory variables retained 

E. coli 86 7 SLUI 

G260 85 11 SLUI + Planting 

G540 81 12 SLUI 

Clar 37 0   

SSC 75 10 Erosion + SLUI + Fencing + Erosion x SLUI 

Turbidity 61 14 Erosion + SLUI + Fencing + Erosion x SLUI 

 

5.7.3 Relationship between trends at discharge and impact sites 

There were 19 pairs of discharge-impact sites for which 7-year trends had been evaluated 

(see Section 5.4). Concordant trends at the discharge-impact sites were in both the decreasing 

and increasing direction (Table 33). Of the 19 pairs of sites, 10 had concordant trends for 

clarity, which was not statistically significant (Table 33). There were 11 and 13 concordant 

pairs of trends for E. coli and SSS respectively, which was highly significant. The paired E. 

coli and SSS trends were predominantly decreasing.  

Table 33. Concordance between paired discharge-impact site trends. The p-value indicates 

the significance of the number of concordant pairs (binomial test, H0 = paired sites have 50% 

probability of being concordant).  

Variable Number 
of paired 

sites 

Number of 
concordant 
increases 

Number of 
concordant 
decreases 

Number 
concordant 

p-value Overall 

direction 

Clarity 19 8 2 10 1 Not Significant 

E. coli 19 6 11 17 0.001 Decreasing 

SSC 19 4 13 17 0.001 Decreasing 

 

5.7.4 Trends in climate and flows 

There was only one climate station for which the 10-year annual rainfall trend direction was 

determined with confidence and this was increasing (Table 34). For the seven-year period two 

climate stations had certain decreasing trends and one had a certain increasing trend (Table 
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34). For both the 10-year and seven-year time periods, the only trends in flow that were 

determined with confidence were decreasing trends (Table 34).  

For flows there was a dominance of decreasing trends when certainty in trend direction was 

disregarded (negative overall median value; Table 34) and sites for which it was at least as 

likely as not that the true trend was decreasing (Figure 49). Binomial tests indicated a 

significant (i.e., p < 0.05) regional decreasing trend for flows for the seven-year period and a 

close to significant regional decreasing trend the 10-year period (Table 34). Median RSS 

values for flow trends for the seven and 10-year periods were -3% and -0.5% respectively 

(Table 34). By contrast, for rainfall there was a dominance of increasing trends when certainty 

in trend direction was disregarded (positive overall median value; Table 34) and sites for which 

it was at least as likely as not that the true trend was increasing (Figure 49). The overall median 

RSS values for annual rainfall for the seven and 10-year periods were 0.5% and 0.6% 

respectively (Table 34). Neither time-period was associated with a significant regional trend in 

annual rainfall. 

Table 34. Results of trend analyses on annual rainfall and mean annual flows at climate and 

flow recording stations.The five left-most columns report the number individual stations and 

the numbers of trends determined with confidence by direction. The three right-most columns 

report the overall trends including the results of the binomial tests.  

Station 

type 

Time 

period 

Number 

of 

stations 

Number of 

certain 

decreasing 

Number of 

certain 

increasing 

Total 

decreasing 

Overall 

median 

RSS 

Binomial 

test p-

value 

Rain 10 13 0 1 3 0.60 0.092 

Rain 7 13 2 1 5 0.49 0.581 

Flow 10 14 1 0 11 -0.49 0.057 

Flow 7 14 4 0 12 -3.09 0.013 
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Figure 49. Map of climate and rainfall stations classified by the level of confidence that trends 

in annual rainfall and mean annual flow were decreasing for the seven and 10-year time 

periods. See Table 3 for details of the confidence categories. 
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6 Discussion 

This study had objectives that are specific to changes in water quality in the Manawatū-

Whanganui Region, but with conclusions and recommendations that are of national interest. 

The study developed methods for spatially interpolating water quality trends from monitoring 

sites to a whole region and to quantify water quality improvement. In addition, the study 

demonstrates methods for evaluating associations between water quality interventions. These 

methods provide evidence and a quantification of the efficacy of catchment to regional scale 

management interventions aimed at improving water quality. The regional scale of this study 

is in contrast to most studies of the efficacy of interventions to improve water quality, which 

tend to be at the scale of individual mitigation measures, to small sub-catchments (Wilcock et 

al., 2013). 

During this study, some additional detailed research was conducted on questions concerning 

flow adjustment of water quality data as part of trend analysis and spatial modelling of the E. 

coli statistics G260 and G540. The findings of these additional research items will be of interest 

in future water quality trend analysis and spatial modelling of river swimming grades.  

6.1 Assessment of swimming grades in the region  

The regional swimming maps (Figure 28, Figure 31) and quantification of the length of 

swimmable rivers that were both made using HRC’s recent water quality data were broadly 

consistent with the national swimming maps (Table 15). The data used to produce the national 

swimming maps differed from that used to produce the regional maps in this study, both in 

terms of the number of sites representing the region and the treatment of that data. The 

national swimming maps were generated from a dataset describing E. coli measurements at 

753 sites throughout New Zealand that comprised at least 30 samples over a period that 

extended from 1990 at some sites to the end of 2013. There were 82 sites representing the 

Manawatū-Whanganui Region in the national dataset. By contrast, this study was regional in 

extent and predictions were generated using two datasets of 69 and 87 sites that pertained to 

the 10-year and seven-year period ending 2016.  

The proportion of swimmable river segments across the region assessed from the seven-year, 

10-year and national datasets ranged from 38% to 46% for segments of order four and greater 

and from 36% to 38% for all segments (Table 15, Table 19). For individual swimming grades, 

the ranges of estimates of the proportion of river segments were larger (e.g., segments 

categorised good ranged from 8% to 31% for assessments based on the seven-year, 10-year 

and national datasets; Table 15, Table 19). Part of the variation in the assessments of 

swimming grades is associated with instability of the swimming grade assessments through 

time at individual sites. For example, only 71% of the 69 sites that were in common to the 10-

year and seven-year time period had the same grade for both time periods (Table 8). Instability 

in the grade occurs due to the imprecision of the calculated E. coli statistics and is an 

unavoidable consequence of estimating a population statistic (e.g. median, G260) from a 

limited number of samples (see McBride (2016) for more details). It is noted that grade 

instability would likely have been greater if the 95th percentile statistic had been included in 

grade determinations, due to its high imprecision (Stats NZ, 2017). 

Variation between the different swimming maps also arises because the underlying models 

are sensitive to the mix of sites used in the modelling fitting process. When there are few sites 

with low values of the G260 and G540 statistics, the model is likely to under predict the 

occurrence of segments with excellent and good swimming grades. This arises because the 

‘A’ grade is defined by exceedance values less than 0.2 and 0.05 for G260 and G540 
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respectively. Regional datasets are likely to have few sites with values of G260 and G540 that 

are at or below this threshold because most monitoring networks under-represent sites with 

good water quality (e.g., reference sites, (Larned and Unwin, 2012)). It is therefore 

recommended that modelling that aims to produce regional swimming maps should consider 

using data from sites in adjacent regions and possibly national models.  

In addition to differences in the extent and size of datasets used, some of the modelling details 

employed by this study differed compared to the modelling underlying the national swimming 

maps. This study found that logit transformation of the response variable is desirable for 

modelling the G260 and G540 statistics. The logit transformation has the effect of spreading 

low values of G260 and G540, which improves the model’s fit to this part of the response 

gradient. It is therefore recommended that G260 and G540 are logit transformed in future 

modelling of river swimming grades (for more details see Appendix A).  

Previous studies have noted that site-scale uncertainty associated with national scale spatial 

models of E. coli statistics is high (Larned et al. 2016; Snelder et al., 2016a). This study found 

that national models of E. coli statistics had better performance than the regional models 

(Table 13, Table 14). In addition, this study showed that model predictions are sensitive to the 

input data. Therefore, national and regional swimming grade maps produced using statistical 

modelling should be regarded as indicative. The greatest confidence should be put in grades 

derived for individual SoE sites based on monitoring data, but it should be kept in mind that 

these grades may be sensitive to the assessment time-period. 

Swimming grades for the 10-year time-period assessed from year-round data were compared 

with grades assessed from the same time-period but restricted to data pertaining to the bathing 

season. These comparisons indicated that a larger proportion of sites were swimmable (grade 

fair or better) during the bathing season than year-round (59% versus 55%). However, small 

headwater rivers (order 1, 2 & 3) tended to have lower swimming grades (i.e., less suitable) 

in the bathing season compared to their year-round grades. By contrast, large rivers (order 4 

and greater) tended to have better swimming grades in the bathing season compared to their 

year-round grades. The reasons for these differences were not investigated. Because of the 

generally poorer swimming grades for small rivers during the bathing season, swimming maps 

that represent the bathing season indicate that only 17% of all rivers (by length) are 

swimmable. The same maps however, indicate that 36% of large rivers are swimmable during 

the bathing season, which is consistent with the year-round regional swimming map. 

6.2 Water quality trends 

Most trends at SoE sites were uncertain for the 10 and seven-year time periods. However, 

this is based on a misclassification (of trend direction) error risk of 5%. When the traditional 

confidence level of 95% was relaxed there was a clear pattern of improving trends (Figure 17, 

Figure 20). For example, the proportion of sites with 10-year trends that were at least as likely 

as not to be improving were 65%, 81% and 80% for E. coli, G260, and G540 respectively 

(Figure 17). For the seven-year time-period, the proportion of sites with trends that were at 

least as likely as not to be improving were 72%, 91%, 81%, 78%, 99% and 95% for E. coli, 

G260, G540, clarity, SSC and turbidity respectively (Figure 20).  

The trend direction classification pertains to an individual site and the error risk describes the 

degree of confidence in trend direction that its data provides. The misclassification error risk 

for individual sites can be disregarded when considering water quality trends globally (i.e., for 

all sites across the region). The logic for this is that over many sites, incorrect classifications 

of direction will cancel each other (i.e., as many sites will be misclassified as increasing as 
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sites misclassified as decreasing). Therefore, the general regional change in the water quality 

variables is summarised by the distributions of RSS values (Figure 18 and Figure 21). These 

data indicate that the majority (often > 75%) of sites have improving trends. Thus, the trend 

analyses of SoE sites (i.e., in rivers not subject to specific point source impacts) provide strong 

evidence of general regional improvement in the four water quality measures over the past 

decade.  

Trend analyses of discharge and impact sites resulted in similar patterns to those of SoE sites. 

The largest trend category for all variables was ‘uncertain’ for both types of sites (Table 11, 

Table 12). However, when more lenient levels of confidence were accepted there was a clear 

pattern of improving trends for both discharge (Figure 24) and impact (Figure 26) sites. For 

example, trends at discharge sites were at least as likely as not to be improving at 74% and 

59% of sites for E. coli and SSC respectively (Figure 24). Trends at impact sites were at least 

as likely as not to be improving at 71%, 87% and 100% of sites for E. coli, SSC and turbidity 

respectively (Figure 26). Thus, the trend analyses of discharge and impact sites provide strong 

evidence of regional improvement in water quality specific to point sources over the past 

decade. 

6.3 Predicted regional improvement in swimming grades and sediment 
related water quality variables 

The length of order 4+ rivers that are swimmable was estimated to have increased by 8% and 

7% for the 10 and seven-year time-periods respectively (Table 22 and Table 25). These 

estimates however are based on a combination of analyses (trend analyses and two spatial 

models) – all of which are associated with uncertainties. In particular, the random forest 

models of trend direction had only poor to satisfactory performance (Table 24). The combined 

uncertainty of the two models was not able to be quantified. The estimates of increase in 

swimmable rivers should therefore be regarded as indicative.  

Although the estimated increase in the length of swimmable rivers is uncertain, several lines 

of evidence support the conclusion that the length of swimmable rivers has increased over the 

past decade. First, most sites have shown improving trends in the three relevant E. coli 

statistics. In particular, 75% of SoE sites had decreasing trends in the proportion of samples 

exceeding 260 and 540 E. coli 100mL-1 (i.e., G260 and G540; Figure 18 and Figure 21). 

Second, there was a dominance of improving trends in water quality variables that indicate 

sediment contamination (clarity, turbidity and SSC; Figure 21). Because transport pathways 

for sediment and E. coli are similar (i.e., overland runoff; McDowell et al., 2008), the 

improvements in sediment contamination support the observation that E. coli concentrations 

have reduced and therefore swimming grades have improved. Third, the trend direction 

classification models were based on relationships that were consistent with known 

management actions. For example, probability of improving trends was associated with 

catchments with soft sedimentary geology of intermediate area, slope and elevation (Figure 

34 and Figure 38). In addition, the probability of improving trends was negatively associated 

with the proportion of catchment occupied by indigenous forest and scrub (Figure 34 and 

Figure 38). The combination of these relationships describes erosion prone hill country areas 

that have been targeted by the SLUI project and which have been associated with the most 

significant water quality interventions in the region. Fourth, analysis of trends in point source 

discharges and associated downstream impact sites indicated that 17 of 19 paired discharge-

impact sites had concordant decreasing reducing E. coli trends (Table 33). Because point 

source discharges are located on large main-stem rivers, the improvements in point source 

discharges will have contributed to an increase in the swimmable length of these rivers. 
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The study has also shown that the regional river water quality has improved with respect to 

the sediment related water quality variables. The median SSC values exceeded by 25% of 

segments were estimated to have reduced by 1.3 g m-3 and median turbidity values exceeded 

by 25% of segments were estimated to have reduced by 1.1 NTU over the seven-year trend 

period (Table 28). These reductions are considerable when compared to the mean of SoE site 

median values, which for SSC and turbidity were 10 g m-3 (range 1.0 – 72 g m-3) and 6.4 NTU 

(range 0.5 – 38.5 NTU) respectively. The study estimated that median clarity had increased 

(i.e., improved) in segments of order four or greater but had decreased in segments of smaller 

rivers (Table 28). The median clarity values exceeded by 25% of segments of order four or 

greater were estimated to have increased by 0.3 m. Again, this increase is considerable when 

compared to the mean of SoE site median values, which was 2.1 m (range 0.2 – 5.6 m).  

Regional improvement in the sediment related water quality variables (clarity, SSC and 

turbidity) was estimated based on a combination of analyses (trend analyses and two spatial 

models) – all of which are associated with uncertainties (e.g., Table 27). The estimated 

regional improvement in the sediment related water quality variables should therefore be 

regarded as indicative. However, for reasons set out above for the E. coli trends, several lines 

of evidence support the conclusion that regional river clarity, SSC and turbidity have improved 

over the past decade.  

6.4 Robustness of regional estimates of water quality improvement 

The ability to track progress toward environmental objectives and report on the effectiveness 

of policies and interventions is an important part of resource management. A major reason for 

long term water quality monitoring is to contribute to the evaluation of policies and 

interventions. The national targets for swimming grades in fresh waters (Ministry for the 

Environment, 2017a) is an example of a management initiative that will require future 

monitoring and evaluation of management effectiveness. This study has provided an approach 

to those evaluations. Spatial modelling is fundamental to the approach because regional and 

national water quality monitoring networks are not representative of general conditions. 

Previous studies have shown the national river water quality monitoring network is biased to 

sites in more impacted environments (Larned and Unwin, 2012). Comprehensive 

assessments and quantification of change in state over a time-period must therefore be based 

on modelling to produce estimates that reflect the spatial distribution of actual conditions rather 

than conditions as reflected by the monitoring network (Snelder et al., 2017). The combination 

of monitoring data and statistical spatial modelling undertaken by this study is an example of 

the way changes in state over a time period in relation to specific interventions can be 

assessed. Other types of modelling, such as more mechanistic approaches (e.g., CLUES, 

(Elliott et al., 2016), could also potentially be used. 

The robustness of modelled change in state over a time-period is influenced by the available 

data. In this study, a crude approach to predicting the direction of trends in all network 

segments was taken based on temporally static catchment characteristics such as landcover, 

elevation, slope and geology (e.g., Figure 34). These models only had poor to satisfactory 

performance, which is probably because these predictors are only associated with the 

locations at which drivers of water quality were changing through the time-period. For 

example, the RF classification models indicated that the probability of improving trends was 

associated with hill country farming areas, particularly in soft sedimentary geology (e.g., Figure 

34 and Figure 35). These areas are associated with SLUI farms (Figure 8), which were subject 

to interventions through the time-period.  
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Spatial models that included predictors that described actual changes in the drivers of water 

quality over time would likely be more accurate and informative than the models defined by 

this study. Water quality changes are generally driven by a combination of management 

interventions aimed at improvement and resource use intensification that may drive 

degradation (Wilcock et al., 2013). Therefore, both types of information would be required to 

improve predictions of change in state over the whole region. To make best use of monitoring 

data and to maximise model performance, information on interventions and changes in 

resource use are required at a spatial resolution that is consistent with the spatial grain of the 

response variables – which is determined by the water quality monitoring network. This means 

that optimal spatial data describing interventions and resource use would be consistent with 

the area of the smallest catchments represented by the water quality monitoring network, 

which is in the order of 1 km2. However, to date it has not been possible to obtain spatial data 

describing land use and management changes through time at this level of spatial resolution 

due to the confidentiality of this type of information. If the ability to track progress toward 

environmental objectives and report on the effectiveness of policies and interventions is to be 

improved, access to land use and management data is required. More consideration of ways 

that this type of data could be provided such that confidentiality was maintained but with 

sufficient resolution to provide accurate and useful assessments is recommended.  

6.5 Association between trends and interventions  

This study found statistically significant associations between interventions and water quality 

improvements. The analysis of associations was possible because HRC had maintained 

records of the actions that included the geographic location. This highlights the value of not 

only water quality monitoring, but also monitoring and recording management actions.   

These associations are correlative and do not prove that the interventions caused the water 

quality improvements. In addition, if information describing resource use intensification within 

the catchments of the water quality monitoring sites were available, different conclusions about 

the associations between interventions and water quality improvements might be reached.  

Trend direction at SoE sites was significantly associated with a combination of the proportion 

of upstream catchment occupied by SLUI farms, erosion and planting and the proportion of 

river segment length with new fencing (Table 29, Table 30, Table 31 and Table 32). The 

interventions were generally positively associated with water quality improvements (i.e., 

increasing areas of interventions were positively associated with higher probability of 

improving trends (Figure 45 and Figure 47) or increasing trend magnitude (Figure 46 and 

Figure 48). There were positive relationships between trends in E. coli, G260 and G540 and 

fencing and planting (i.e., trend magnitude increased with increasing values of the predictors) 

for both the 10 (Figure 45 and Figure 47) and seven-year (Figure 46 and Figure 48) time 

periods. This result is counter to expectations and may arise because the interventions are 

targeted at catchments that have been identified as subject to degrading trends or in a 

degraded state. In addition, the catchments in which these interventions occurred may also 

be subject to land use intensification that increased faecal contamination. It is noted the 

fencing and planting were negatively associated with trends in SSC and turbidity for the seven-

year time-period (Figure 47 and Figure 48).  

In addition to interventions aimed at reducing non-point sources of E. coli and sediment, there 

has been improvement in point source discharges throughout the region (Table 33). The 

concordance in trend direction between paired discharge-impact sites is evidence that 

changes of concentrations in discharges influence downstream receiving environment 

concentrations for E. coli and SSC (Table 33). In addition, changes in concentration in 
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discharges (and associated downstream receiving environments) were predominantly 

decreases in the seven-year period. This is evidence that improvements to point sources have 

contributed to the general regional improvement (at SoE sites) that has occurred over the past 

decade.  

The study also established regional trends in rainfall and flow through the past decade. There 

was weak evidence for regional increases in rainfall over the 10-year period ended to 2016 

but not for the seven-year period (Table 34). There were statistically significant regional 

decreasing trends in flows for both time-periods (Table 34). These climate induced trends may 

be at least partly involved in the water quality improvements. Conversely however, reduced 

flows over the period may be masking the true extent of the improvements because dilution 

has reduced.  

The study provides several lines of evidence of associations between interventions and water 

quality improvements. This evidence is based on correlations and may be confounded by 

unmeasured variables such as land use intensification and/or climatic variation. However, the 

water quality improvements are consistent with mechanistic understanding of the effect of 

mitigations on the production of E. coli (Elliott and Whitehead, 2016, Semadeni-Davies and S. 

Elliot, 2016) and sediment (Manderson et al., 2015) from catchments. It is therefore not 

possible to conclude with certainty that the water quality interventions have caused the 

observed water quality improvements in the Region, but it seems likely they have at least 

contributed.  

A mixture of interventions has been deployed by HRC (e.g., farm plans with various individual 

mitigations, point source upgrades and individual stream fencing and planting) and data 

describing exactly what occurred where was not available. Because of this lack of mitigation 

specific data and the potential effects of unmeasured variables, this study (or type of study) 

cannot be used to quantify the effectiveness of individual mitigations. Specific controlled 

studies are required for this type of evaluation (e.g., Monaghan et al., 2008; Wilcock et al., 

2006). Nevertheless, the results provide encouraging signs that the improvements from local 

scale interventions are collectively contributing to regional scale water quality improvement.   

6.6 Flow adjusting as part of trend assessment 

This study considered the issue of flow adjusting water quality data as part of trend 

assessment in some detail (see Appendix B). There are good reasons to flow adjust. Adjusting 

data to account for flow (or any covariate) decreases variation and increases statistical power 

(i.e., increases the likelihood of detecting a trend with certainty, (Helsel and Hirsch, 1992). In 

addition, flow adjustment can improve trend detection if there has been a bias in the flow on 

sample occasion (i.e., increasing or decreasing flow on sample occasion with time). However, 

decisions concerning the appropriateness of water quality variable - flow models that underlie 

flow adjustment are subjective and site specific. This means that inspection of the data for all 

trend analysis is required and that trends based on automatic (i.e., non-supervised) flow 

adjustment should not be relied on.  

Based on the examination of a subset of sites with adequate flow data, it was concluded that 

the findings of this study would not be significantly different if flow adjusted trends had been 

used. It is not known whether this finding can be extended to other studies and it is 

recommended similar analyses are undertaken for any study of water quality trends to 

investigate the importance of flow adjustment.  
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Ideally there would be a more objective basis for choosing to flow adjust (and for choosing the 

appropriate model for doing so). There have also been recent developments of techniques for 

trend analysis that incorporate flow in a more flexible and robust manner than the traditional 

methods (e.g., Hirsch et al., 2015). Given the importance of trend analysis, it is recommended 

that flow adjusting and trend assessment in general are further investigated.  
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Appendix A Investigation of alternative transformations and 
methods for modelling water quality state 

A1 Considerations 

It was noted by Snelder et al. (2016a) that the distributions of the E. coli statistics G260 and 

G260 had values between zero and one (because these are proportions), which could be 

made more symmetric with a logit transformation: 

logit = log[x/(1 - x)] 

where x are values in the range 0 to 1 and the results are values between −∞ and +∞. Values 

in logit space are converted back to the range 0 to 1 by the inverse logit function: 

inverse logit = exp[x]/[1+exp(x)] 

Snelder et al. (2016a) found that when modelling G260 and G540 a logit transformation of the 

response variables (i.e., G260 and G540) did not improve model performance and left these 

variables untransformed when fitting the spatial models. There is however a consideration in 

addition to model performance that is associated with transformation of the modelled response 

variable. Because RF models are a partitioning method, the predictions are never outside the 

range of the response and in fact are always slightly less than the observed range. The 

truncation of the observed range can be exacerbated by variables that have uniform 

distributions such as those of G260 and PropGT540. The logit transformation has the effect 

of stretching out the range of the uniformly distributed G260 and G540 values and reduces 

the extent to which the predictions truncate the observed range. This reduction in the 

truncation of the range of model predictions is important in the situation that low (or high) 

values of 0-1 distributed observations are rare and where low values have special importance. 

In the national models of Snelder et al. (2016a), the predicted range of G260 and G540 values 

was not severely truncated because there were reasonable numbers of sites with low values 

of G260 and G540. However, in this study there were few SoE sites with low values of G260 

and G540 (i.e., sites with very good water quality) and models fitted to untransformed 

response data resulted in some unrealistic predictions. In addition, low values of G260 and 

G540 have special significance as these determine excellent swimming grades (Table 1). For 

example, if the model is not able to predict values of 0.05 or less for G540 or less than 0.2 for 

G260 then no locations will be predicted to have swimming grades in the excellent category, 

even though a small number of SoE sites may in fact have this swimming grade.  

A2 Test Methodology 

This study investigated two possible approaches to reducing the problem of truncation so that 

predictions of G260 and G540 are realistic. First, the G260 and G540 values were logit 

transformed prior to fitting RF models and bias in the back-transformed model predictions 

were investigated. Second, the use of an alternative type of statistical model called a 

multivariate adaptive regression spline (MARS) was investigated.  

The effect of transformation and model type on predictions of the E. coli statistics was 

examined by numerical experimentation. RF models were first fitted to the E. coli statistics 

without any transformations and compared the range in the fitted and observed values. Models 

were then fit using log10 transformed median values and logit transformed the G260 and G540 

values. The fitted values of both sets of models were then compared with the observed values. 
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The performance of these models was evaluated as was the performance of the models of 

the median E. coli with and without corrections for re-transformation bias.  

MARS models are a type of regression model that can be seen as an extension of linear 

models (Friedman, 1991). Like RF, MARS has the advantage over traditional statistical models 

of automatically modelling nonlinearities and interactions between variables. Unlike RF, 

MARS models are based on fitting piece-wise linear models and predictions are therefore not 

subject to truncation of the ranges of the observed response values; in fact, MARS models 

will extrapolate predictions outside the range of the observations like a simple linear regression 

model. The use of MARS models to make predictions of G260 and G540 was investigated. Of 

interest was whether MARS-based predictions of low values of G260 and G540 were more 

realistic than RF models and whether MARS model performance was comparable with RF 

models. The median values were log10 transformed and the G260 and G540 values were logit 

transformed before fitting the MARS models. The predictions of the model of the median 

values were corrected for re-transformation bias when examining the model performance. 

The performance of RF and MARS models were tested objectively using leave-one-out cross 

validation. In this process both models were fitted to the available data for all but one site. The 

fitted models were then used to make a prediction for the “hold-out” site. This process was 

repeated for all sites and the independent predictions for each site were then compared with 

the observed values for both models. The performance of both models was quantified using 

the performance measures described in Table 5. 

A3 Results of tests 

The effect of transformation and model type on predictions of the E. coli statistics was 

examined by numerical experimentation using the 10-year time-period dataset. RF models 

fitted to the untransformed E. coli statistics significantly over-estimated the minimum values of 

all three statistics (Table 35). The fitted minimum values for G260 and G540 were 0.06 and 

0.04 respectively whereas the minimum observed values for both statistics were 0.01 (Table 

35). The predictions produced low proportions of the network (by segment length) with low 

values of each statistic (Table 36, Figure 50). This resulted in predictions of very low 

proportions of segments in the excellent and good swimming grades (Figure 50). This result 

is unrealistic when compared to the observed grades at the SoE sites (Table 36).  

RF models fitted to log10 transformed median values and logit transformed G260 and G540 

values produced minimum fitted values that were closer to the observations than their 

untransformed counterparts (Table 35). Although minimum predicted G260 and G540 values 

were higher than the minimum observed values, predictions of segments in the excellent and 

good swimming grades (Figure 28, Figure 50) were more realistic, particularly when compared 

to the observed grades at the SoE sites (Table 36).  

MARS models fitted to logit transformed the G260 and G540 values produced minimum fitted 

values that were the same as the observations (Table 35). On the other hand, the MARS 

models produced fitted values for G260 and G540 that were higher than the observed values 

and fitted values for the Median that were lower than observed. The MARS model predictions 

produced low proportions of network segments (by length) in the fair and intermittent 

swimming grades and high proportions in the poor grade (Figure 51), particularly when 

compared to the proportion SoE sites with these (Table 36). 
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Table 35. Minimum and maximum observed and fitted values for different transformations 

and model types. The models were fitted to the three E. coli statistics represented in the 10-

year time-period dataset.  

Variable Model Transformation Minimum 

observation 

Minimum 

prediction 

Maximum 

observation 

Maximum 

prediction 

E. coli RF None 0.5 37 768 565 

G260 RF None 0.001 0.057 0.85 0.78 

G540 RF None 0.001 0.035 0.63 0.50 

E. coli RF Log10 0.5 3.2 768 553 

G260 RF Logit 0.001 0.011 0.85 0.78 

G540 RF Logit 0.001 0.004 0.63 0.50 

E. coli MARS Log10 0.5 0.7 768 413 

G260 MARS Logit 0.001 0.001 0.85 0.91 

G540 MARS Logit 0.001 0.001 0.63 0.7 

 

Table 36. Proportion of segments predicted to be in the five swimming grades by the 

different combinations of model and transformation. The first line shows the proportions of 

the 69 SoE sites used as fitting data for comparison.  

Predictions Excellent Good Fair Intermittent Poor 

SoE sites 12 12 16 38 23 

RF Untransformed All segments 0 2 3 19 76 

RF Untransformed Order 4+ 1 9 16 38 35 

RF Transformed All segments 20 10 6 20 44 

RF Transformed Order 4+ 13 10 13 34 29 

MARS All segments 23 3 4 10 61 

MARS Order 4+ 13 6 8 25 47 

 

Models and transformation choices produced differing model performance (Table 37). 

Transformation of the response variables did not markedly affect the performance of the RF 

models. All RF models had values of NSE, RSR and PBIAS close to, or better than, 

satisfactory. The RF model of median values had a large bias when the predictions were not 

corrected for back-transformation bias compared to the corrected predictions (Table 37). Bias 

increased when the G260 and G540 were logit transformed. It is not known if there is an 

analytical solution for correcting for this bias (in the same way that the smearing coefficient is 

used to correct for bias resulting from log and other transformations). However, the analysis 

suggests that the G260 and G540 values had small bias (small positive Bias and PBIAS values 

Table 37). In comparison to the RF models, the MARS models performed poorly. The NSE 

and RSR values were all well below the satisfactory level and the predictions of median values 

by MARS were strongly biased.  
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The RF models with transformation of the response variables were judged to be the most 

realistic and accurate of the tested choices. All further modelling used RF and log10 

transformation of median values and logit transformation of G260 and G540. Predictions of 

the median have been corrected for back-transformation bias but predictions of G260 and 

G540 have simply been back-transformed with no correction for bias.  

Table 37. Performance of the spatial models of E. coli statistics.  

Statistic Model Transform NSE Bias PBIAS RSR RMSD 

Median RF None 0.46 -5.53 -3 0.73 130 

G260 RF None 0.49 0.00 -2 0.72 0.11 

G540 RF None 0.52 -0.01 -2 0.69 0.15 

Median RF Log10 Uncorrected 0.43 32.7 16 0.76 134 

G260 RF Logit Uncorrected 0.50 0.02 10 0.71 0.11 

G540 RF Logit Uncorrected 0.57 0.01 3 0.66 0.14 

Median RF Log10 Corrected 0.45 7.8 4 0.74 131 

Median MARS Log10 Corrected -9.04 -119.1 -60 3.17 563 

G260 MARS Logit Uncorrected 0.06 0.00 1 0.97 0.21 

G540 MARS Logit Uncorrected 0.19 0.00 0 0.90 0.14 
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Figure 50. Spatial model predictions made using RF models and untransformed response variables for the 69 SoE sites represented in the 

10-year dataset. The right-hand map represents the predicted swimming grade derived from analysis of the predicted values of the three 

statistics to the left. SoE sites are shown as dots with the colour representing the observed grade for the site (i.e., not the grade predicted by 

the model). 
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Figure 51. Spatial model predictions made using MARS models and transformed response variables for the 69 SoE sites represented in the 

10-year dataset. A log10 transformation was applied to the median and logit transformations were applied to G260 and G540 prior to fitting 

the models. The right-hand map represents the predicted swimming grade derived from analysis of the predicted values of the three 

statistics to the left.  
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A4 Conclusions and recommendations for spatial modelling of 
state 

The RF models had better performance than the alternative MARS models. Logit 

transformation of the G260 and G540 statistics did not improve the performance of the RF 

models but did improve their ability to discriminate small values of the statistics. Because small 

values of G260 and G540 are important (i.e., they define the Excellent and Good swimming 

grades), logit transformation of these variables is recommended. Back-transformation of 

predictions of a model fitted to logit transformed responses using the inverse logit function 

does not appear to produce appreciable bias. It is noted that naïve back-transformation of 

predictions of a model fitted to a log transformed response does produce bias. While both the 

logit and log10 transformation are non-linear, the logit transformation is not asymmetric, and 

this may be the reason that back-transformation does not induce a bias.  
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Appendix B Considerations regarding flow adjustment in trend 
analysis 

B1 Considerations 

Flow rate at the time that a river water quality measurement is made can affect the observed 

values because many water quality variables are subject to either dilution (decreasing 

concentration with increasing flow) or wash-off (increasing concentration with increasing flow) 

(Smith et al., 1996). Different mechanisms may dominate at different sites so that the same 

water quality variable (e.g., E. coli) can exhibit positive or negative relationships with flow 

(Snelder et al., 2016b).  

Removing the effect of flow (or any covariate) decreases variation and increases statistical 

power (i.e., increases the likelihood of detecting a trend with certainty, (Helsel and Hirsch, 

1992). In addition, a trend in the water quality variable may arise because there is a 

relationship between time and flow on sample occasion (i.e., increasing or decreasing flow on 

sample occasion with time). Removing the effect of flow may change the direction and/or 

magnitude of the trend and may make an uncertain (i.e., insignificant) trend direction certain.  

Flow adjustment uses regression analysis to fit a line or curve to data to represent the 

relationship between the water quality variable and flow. The differences between the 

individual water quality measurements and the line or curve are the regression residuals, 

which represent the variation in the water quality variable that is not explained by, or 

independent of, flow. Flow adjusted values are derived as outlined by Smith et al. (1996):  

Flow adjusted value = regression model residuals + median value 

Various types of regression models are used to fit a line or curve to the water quality variable 

and flow data. Traditionally log-log relationships have been used but more flexible 

relationships have been used since the introduction of locally weighted least squares 

regression (Schertz et al., 1991). For example, Larned et al. (2015) used a generalised 

additive model (GAM) and Ballantine et al. (2010) used locally weighted least squares 

regression (LOESS).  

The problem with flow adjustment is that the adjusted values are sensitive to the underlying 

model of the water quality variable versus flow relationship. Because the model determines 

the regression residuals, large differences in trends can arise between raw and adjusted 

values and between values adjusted using different models. This problem is likely to be 

encountered when the data are obtained from monthly state of environment monitoring 

because they tend to be dominated by samples taken at low to median flows, and high flows 

are poorly represented. This can result in fitted lines or curves that are a poor fit to some of 

the data. It is therefore difficult to know whether confidence should be placed in trends based 

on the raw or flow adjusted data or which model is the most reliable basis for flow adjusting.  

Advice on assessing the robustness of flow adjustment generally starts by considering if the 

shape of the fitted relationship is consistent with expectations. For example, typical 

relationships are monotonic, i.e., increase or decrease as flow increases (Smith et al., 1996). 

Relationships may be well described by log-log models, but relationships can be curvilinear in 

log-log space and the rate of change in concentration with flow can plateau or decrease at 

high flow (Snelder et al., 2016b). For this reason, flexible regression methods such as LOESS 

are promoted, particularly when large numbers of analyses are being carried out by automated 

methods (Helsel and Hirsch, 1992; Schertz et al., 1991).  
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Schertz et al. (1991) advise inspection of the residual plots of regression models to check for 

normality and homoscedasticity (constant variance). However, it is not clear how to determine 

the extent to which deviations from these regression assumptions can be tolerated. Schertz 

et al. (1991) further advise that flow adjustment only be carried out if the model is significant. 

However, they acknowledge that removal of small amounts of flow related variability in the 

water quality variable can improve the detection of significant trends (i.e., establishing trend 

direction with certainty) and suggest relaxing alpha values to 0.10 or greater.  

A more fundamental issue with use of water quality variable - flow models for flow adjustment 

is the assumption that the relationship applies over the full flow range and for the full period of 

record. Both assumptions are probably violated for at least some sites and variables. For 

example, for sediment the relationship varies with flow because the processes that determine 

sediment concentrations at high flow (i.e., wash-off, bank and bed erosion) are different from 

those that apply at low flows (i.e., resuspension of bed sediment). The relationship may 

change with time because sources in the catchment changes (erosion sources healing or 

being created).  

There is therefore considerable subjectivity associated with flow adjusting water quality data 

that is probably inescapable. In addition, automation of flow adjustment in large analyses by 

selecting a single method may result in unrealistic flow adjustment for some sites and 

variables. 

B2 Comparison of raw and flow adjusted trends in this study 

B2.1 10 year dataset 

Of the 69 SoE sites included in the 10-year time-period dataset, 18 had flow data for at least 

80% of sample occasions. Regression models based on log10 of the variable versus log10 flow 

and a LOESS were reasonably consistent with each other for some sites but exhibited 

considerable departures from each other at other sites8 (Figure 52).  

                                                
8 Plots for the complete set of sites are provided in supplementary file 10-year C-Q plots.pdf 
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Figure 52. Example of E. coli concentrations versus flow for four sites in the 10-year time-

period dataset. The blue line represents a regression fitted to log10 of the variable versus 

log10 flow and the red line represents a LOESS model. The flexibility of the LOESS models 

was determined by the span parameter which had the same value (0.8) for all four sites.  

For trends calculated using raw data, 14 sites were categorised as uncertain and one and 

three sites were categorised as decreasing and increasing respectively. The trends calculated 

with flow adjusted data (based on a LOESS model), detected an extra increasing trend (Figure 

53). The trends categorised as decreasing and increasing agreed for raw and flow adjusted 

data. One site had an uncertain raw trend and increasing flow adjusted trend. 
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Figure 53. Relationship between magnitudes of trends evaluated using raw and flow 

adjusted (LOESS) data for median E. coli at 18 sites with flow data in the 10-year time-

period dataset. The points are coloured to indicate whether trend categories agreed. Points 

located in the lower left and upper right quadrants (defined by the horizontal and vertical red 

dashed lines) indicate agreement in trend direction. Points located on the upper left and 

lower right quadrants indicate disagreement in the trend direction. The black dashed line is 

the one-to-one line and represents agreement in magnitude. Trends included on these plots 

complied with the inclusion rules but their directions were not necessarily established with 

confidence. 

The trend categorisations were generally similar for two sets of trends that were flow adjusted 

based on log-log and LOESS models (Figure 54). The trends categorised as decreasing and 

increasing were the same for both sets of flow adjusted data. One site had an uncertain trend 

based on flow adjustment by log-log model and increasing trend based on the LOESS model 

(Figure 54). 
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The log-log flow adjustment produced two trends with large differences in magnitudes 

compared to the LOESS flow adjustment (Figure 54). These sites were the Manawatū at u/s 

PPCS Shannon site that had RSS values for log-log adjustment of approximately -28% 

compared to approximately the -4% for LOESS adjustment and the Tamaki at Tamaki Reserve 

(RSS values of -8% and 8% for LOESS and Log-log flow adjustments respectively). Inspection 

of the concentration-flow relationship for these sites (Figure 52) provides some insight into 

why the flow adjusted trends at these sites differed. The log-log model for the Manawatū at 

u/s PPCS Shannon site had large residual values for the high concentration samples 

(associated with high flow) because the fitted model was dominated by samples in the mid-

concentration range. By contrast, the residuals for the LOESS fitted model were more 

homoscedastic because the more flexible model could represent the non-linear relationship. 

However, the LOESS fitted model exhibited an abrupt change in slope at median flow which 

may be considered unrealistic and which was influenced by a lack of data representing low 

flows (Figure 52). The log-log model for the Tamaki at Tamaki Reserve site also had large 

residual values for the high concentration samples (associated with high flow) because the 

fitted model was dominated by samples in the mid-concentration range. The residuals for the 

LOESS fitted model were more homoscedastic because the more flexible model could 

represent the non-linear relationship. However, the LOESS fitted model exhibited an 

unrealistic relationship, which was influenced by the distribution of the data (Figure 52). It is 

important to note that the smoothing parameter for all four LOESS models shown on Figure 

52 were the same (span of 0.8). This indicates that decisions concerning the appropriateness 

of water quality variable - flow models that underlie flow adjustment are subjective and site 

specific.  
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Figure 54. Relationship between magnitudes of flow adjusted trends evaluated using two 

models of the concentration-flow relationship (log-log and LOESS) data for median E. coli at 

18 sites with flow data in the 10-year time-period dataset.  The points are coloured to 

indicate whether trend categories agreed. Points located in the lower left and upper right 

quadrants (defined by the horizontal and vertical red dashed lines) indicate agreement in 

trend direction. Points located on the upper left and lower right quadrants indicate 

disagreement in the trend direction. The black dashed line is the one-to-one line and 

represents agreement in magnitude. Trends included on these plots complied with the 

inclusion rules, but their directions were not necessarily established with confidence. 

The distributions of trend magnitudes (irrespective of confidence in direction) was reasonably 

similar for the raw and flow adjusted trends (Figure 55). The distribution of trend magnitudes 

for flow adjusted trends produced using the LOESS model were more similar to the raw trend 

magnitude distribution than the trends produced using the log-log model. The global (median 

over all sites) magnitude of the increasing and decreasing trends were similar for the raw and 

LOESS adjusted trends (-1.5% and -1.2% for decreasing and 2.8% and 4% for increasing). 

The global magnitude of the increasing and decreasing trends for log-log adjusted were 

somewhat larger (-2.5% and 4.9%). 



 

 Page 126 of 130 

 

Figure 55. Distribution of trend magnitudes (RSS values) for the median E. coli statistic at 18 

SoE sites with flow data in the 10-year time-period dataset.Trends are based on analyses 

performed using raw and flow adjusted data (indicated by the FA-LogLog and FA-LOESS 

groups on the y-axis). All sites complied the inclusion rules but their directions were not 

necessarily established with confidence. 

 

B2.2 Seven-year dataset 

Of the 88 SoE sites included in the seven-year time-period dataset, 28 had flow data for at 

least 80% of sample occasions. Regression models based on log10 of the variable versus log10 

flow and a LOESS were reasonably consistent with each other for some sites but exhibited 

considerable departures from each other at other sites (data not shown9).  

Trends calculated using raw data, were categorised as uncertain at 17, 10, 20 and 14 sites for 

E. coli, clarity, SSC and turbidity respectively. The trends categorised as certain decreasing 

and certain increasing agreed for raw and flow adjusted data (i.e., both certain increasing and 

decreasing Figure 56). Trends calculated with flow adjusted data (based on a LOESS model) 

included two additional decreasing trends and one additional increasing for E. coli; one 

decreasing and one increasing trends for SSC and three additional decreasing and one 

increasing trends for turbidity (Figure 56).  

                                                
9 Plots provided in supplementary file 7-year C-Q plots.pdf 
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Figure 56. Relationship between magnitudes of trends evaluated using raw and flow 

adjusted (LOESS) data for the four water quality variables at 28 sites with flow data in the 

seven-year time-period dataset.  The points are coloured to indicate whether trend 

categories agreed. Points located in the lower left and upper right quadrants (defined by the 

horizontal and vertical red dashed lines) indicate agreement in trend direction. Points located 

on the upper left and lower right quadrants indicate disagreement in the trend direction. The 

black dashed line is the one-to-one line and represents agreement in magnitude. Trends 

included on these plots complied with the inclusion rules, but their directions were not 

necessarily established with confidence. 

The directions and magnitudes were generally similar for the two sets of trends that were 

flow adjusted based on log-log and LOESS models (Figure 57). The trends categorised as 

certain decreasing and certain increasing agreed for both sets of flow adjusted data (i.e., 

disagreements shown on Figure 57 occurred when one trend was categorised as uncertain 
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and the other was increasing or decreasing).  

 

Figure 57. Relationship between magnitudes of flow adjusted trends evaluated using two 

models of the concentration-flow relationship (log-log and LOESS) data for median E. coli at 

18 sites with flow data in the seven-year time-period dataset.  The points are coloured to 

indicate whether trend categories agreed. Points located in the lower left and upper right 

quadrants (defined by the horizontal and vertical red dashed lines) indicate agreement in 

trend direction. Points located on the upper left and lower right quadrants indicate 

disagreement in the trend direction. The black dashed line is the one-to-one line and 

represents agreement in magnitude. Trends included on these plots complied with the 

inclusion rules, but their directions were not necessarily established with confidence. 

The distributions of trend magnitudes (irrespective of confidence in direction) were reasonably 

similar for the raw and flow adjusted trends (Figure 58). The distribution of trend magnitudes 

for flow adjusted trends produced using the LOESS model were more like the raw trend 

magnitude distribution than the trends produced using the log-log model. For E. coli, the global 

(median over all sites) magnitude of the increasing and decreasing trends differed for the raw 
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and LOESS adjusted trends (-4.2% and -6.5% for decreasing and 4.1% and 2% for 

increasing). The global magnitude of the increasing and decreasing trends for log-log adjusted 

were somewhat larger (-7.9% and 4.7%). 

 

Figure 58. Distribution of trend magnitudes (RSS values) for the four water quality variables 

at 28 SoE sites with flow data in the seven-year time-period dataset.Trends are based on 

analyses performed using raw and flow adjusted data(indicated by the FA-LogLog and FA-

LOESS groups on the y-axis). All sites complied the inclusion rules but their directions were 

not necessarily established with confidence. 

B3 Conclusions and recommendations 

Based on the examination of a subset of sites with adequate flow data, it is concluded that this 

study’s findings would not be significantly different if flow adjusted trends had been used. The 

case study above indicates that decisions concerning the appropriateness of water quality 

variable - flow models that underlie flow adjustment are subjective and site specific. Because 

water quality variable versus flow relationships vary across sites and variables, automation of 
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flow adjustment in large analyses can result selection of unreliable models. Water quality 

variable - flow models that are fitted using flexible regression methods, such as LOESS, are 

more likely to achieve significance and satisfy the assumptions that the residuals are normally 

distributed and homoscedastic. However, the degree of flexibility (e.g., as defined by the 

smoothing parameter in a LOESS model) is subjective. Increasing the flexibility, and therefore 

improving the fit, should not result in obtaining a model whose shape is inconsistent with the 

mechanisms underlying the relationship. Choosing the most appropriate flow adjustment 

therefore requires expert judgement and is subjective.  




